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ABSTRACT

In the design and analysis of a digital satellite

communications system there is an acute need to have the

ability to predict the system's bit error rate (BER).

After defining the ideal performance prediction tool, those

that have been proposed or are now in use are examined and

all are seen to fit into one of two general categories:

The analytical methods and the Monte Carlo simulation-

based approaches. A comparative review of these predictors

is presented. All are found to fall short of the ideal

although the simulation-based estimators are much closer than

any of the analytical ones. The best performance prediction

tools are seen to be an application of importance sampling

to Monte Carlo simulation proposed by Shanmugam and Balaban

and a graphical extrapolation method proposed by Weinstein

that entails linearization of the tail of the output

signal's pdf. A new predictor is proposed that combines

the techniques of Shanmugam and Balaban with those of

Weinstein in an attempt to utilize the advantages of each.

This Modified Extrapolation technique is then evaluated and

found to be better than Weinstein's method but just slightly

worse than the importance sampling approach for a system0-6
BER = 10 with a normalized error : = 0.1. At smaller BERs,

the structure of the proposed technique indicates that it

will again be superior to Weinstein's approach and that it

will even become better than Shanmugam and Balaban's method.
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1.0 INTRODUCTION

A typical digital satellite communications system

JI consists of two earth stations and a channel containing an

uplink, a downlink, and the satellite transponder. In the

Iprocess of designing such a system, it is absolutely essential
that the designer have the capability to predict its

i performance under conditions similar to those that will be

- encountered during actual operation. Having a performance

prediction tool allows the comparisons of various filters,

modulation schemes, amplifier operating points, etc., in

the quest for a "best" system to fit the design criteria.

Further, the tool permits the determination of a system's

0sensitivity to perturbations such as phase imbalances, linear
and nonlinear (AM-AM, AM-PM) distortions, and time, phase,

and frequency jitter.

While predicting the performance of the typical satellite

system involves the determination of several different

performance indices, perhaps none is quite so useful and

Iimportant as the symbol, or bit, error probability [P(e)].

Commonly known as the bit error rate (BER), this parameter

is the prevalent one used to make qualitative and quantitative

evaluations of the performance of digital communications

systems. When operation is over a linear, Gaussian channel

with no bandwidth restrictions, calculation of the error

probability of a system is a very straightforward and easy

task (1].

Performance prediction, however, is an attempt to
determine how well a realistic system will perform. In
digital satellite communications this means taking into

consideration the facts that the channels used are frequently

1'



bandlimited and often nonlinear, as is the case when a
-" travelling-wave tube amplifier (TWTA) is operated near its

saturation point. The bandlimiting causes the modulated

pulse to suffer some spreading across time thus introducing
intersymbol interference (ISI). In addition, the channel
noise is occasionally non-Gaussian. With a system having
any of these characteristics, the task of calculating the

- .BER performance is quite difficult.

Finding a solution to this problem is a matter of
finding, or creating, an acceptable prediction tool. In

order to meet the requirements stated earlier, the tool must

be very flexible with regards to system configurations and

components. On the other hand, it is obvious that the tool
should produce accurate results without an unreasonable

computational and analytical burden. Unfortunately, these

two requirements have proven to be unreconcilable [2]. Out

of these requirements have grown the two techniques that

form the basis for all performance prediction tools. Monte

Carlo simulation is an approach in which the system is modeled

in a component by component (building blocks) manner with the

simulation being run in the time domain and the noise treated

as a vector of random samples. This can be used to model

the performance of any system, with any configuration, to

any desired accuracy. However, due to the extremely low bit

. error rates seen in satellite systems, typically on the order
of 10-6, the time involved to produce reliable results is

often unacceptable because of large sample size requirements.

: .. On the other hand there are purely analytical methods that

can quickly produce acceptably accurate results using one or

more integrated mathematical models of the system. However,
the assumptions needed to derive analytically tractable
results are often too restrictive, thus limiting application

*to a few easily characterized systems.

2
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It is well known that the primary causes of detection

error in digital communication are thermal noise, typically

additive white Gaussian noise (AWGN), and the intersymbol

interference that arises in the communications channel.

Calculating the error probability for a satellite system,

therefore, is equivalent to finding a prediction tool that

will account for the effects of noise and ISI on the signal.

This means taking into consideration the effects of the

nonlinearly transformed uplink noise and ISI in addition

to those of the ISI and noise arising on the downlink.
Further, the tool must all the while incorporate the conflicting

requirements of speed and flexibility mentioned previously.

Over the past two decades, a considerable amount of work

has been done towards solving the various parts of this

problem. There have been analytical approaches [3]-[30],[47],

approaches based on Monte Carlo simulations [311-(46], and

even a hybrid approach, but as of yet, there does not seem

to be a clear understanding of the overall effect that uplink
noise and intersymbol interference preceding a nonlinearity

have on the BER.

Almost all of the early work, and the vast majority of
what has been done so far, can be placed into the realm of

the analytical techniques. A great amount of effort has been

given to the study of the effects of ISI on the BER performance

of a system but, in general, either a linear channel has

been used [3]-(131 or if a nonlinear channel has been assumed,

then the uplink noise has been either ignored or considered

to somehow bypass the nonlinear transformation. Another

body of work has been concerned with the effects of uplink

noise passing through a nonlinearity (14]-(24], however, the

signal is presumed to be wideband (no ISI) and the non-

linearities are treated as hard- or soft-limiters. Some

[25]-[26] have merely developed characterizations of typical

3
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nonlinearities and of those few that have dealt with both

ISI and uplink noise preceding a nonlinear transponder

(271-[30], most have used just some form of limiter and not
a more realistic transponder model.

With the growth of the satellite field bringing more

stringent design specifications, there has been a realization

that the flexibility inherent in Monte Carlo simulation is

more important than the inherent speed of the analytical

methods. Coupled with the ability of simulation to achieve

any level of accuracy desired, this technique is seen to be

a more powerful and desirable one than performance prediction

using purely analytical methods. Since it has been shown

[311-[37] that Monte Carlo techniques can be used to deal with

intersymbol interference in the absence of uplink noise, the

prediction via simulation problem boils down to that of how

to consider the effects of the uplink noise without taking an

unacceptable amount of computational time to do so. Modification
to the noise statistics via importance sampling [431-(461 is

one approach that has been taken to reduce the amount of run

time. Another involves the estimation of the tail probabilities

of the output signal level using either extreme value distri-

bution theories or those of asymptotic approximation [38]-[42].

As far as the hybrid technique goes (2], it merely

consists of using a mathematical model for the nonlinearity

while retaining the Monte Carlo model for the rest of the

system. This has the flexibility problem of any analytical

method in that a highly accurate model of the nonlinearity

eliminates the ability to compare differing transponder

configurations and components.

The remainder of this thesis is divided into four parts.

In the next section, a review of the ideas that form the

basis of system error performance prediction and its importance

is presented. Chapter 3 examines the status of performance

4
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prediction through a discussion of the methods mentioned

in the preceding paragraphs. An analytical examination of

a potential prediction tool's effectiveness is conducted in
Chapter 4 and the implications and conclusions of the studyI: are presented in the final section.
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I'..2.0 STATEMENT OF THE PROBLEM

A typical satellite communications channel is a bandpass

system with a center frequency in the 4-20 GHz range and a

bandwidth of 500 MHz. For notational convenience in dis-
cussing this system, we shall make use of the well-known

fact that a bandpass system can be modeled by an equivalent

baseband system through utilization of the concept of the

complex envelope representations of bandpass signals. ThisI modeling is effective, of course, only if the performance of
the system does not exhibit frequency dependence above and
beyond that of atmospheric attenuation, fading, etc. Since
the prediction of the bit error probability in digital
communications is almost entirely dependent on determining

the effects of noise and intersymbol interference, both of

generality, we are free to use a baseband equivalent system

in llfuture discussions. Consequently, Figure I. presents

ageneralized model of the typical satellite communications

sytmo this study. It should be noticed that the notation

used in Figure 1 and in the following paragraphs adheres

closely to that of Shanmugam and Balaban in (45].

2.1 The System

The system being modeled is seen to represent a dedicated,

single carrier per transponder configuration that can easily

I:- be thought of as simulating time-division multiple-access
(TDMA) techniques. Of the five functional areas into which

the system is grouped, the first to be seen by a user is the

6
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transmitter, consisting of the modulator and a bandlimiting

filter. The filter is a conglomerate representation of the

various stages of filtering encountered in an actual transmitter,

such as those for pulse-shaping (a function that is performed

entirely in the transmitter in most satellite systems) and

for fitting the signal to the FCC transmission mask.

"Bandlimiting" simply indicates that the filter has the

narrowest bandwidth (and therefore, smallest bandwidth-signal

pulse time (BT) product) of any in the system and that all
significant LSI arises at this filter.

Following the transmitter is the section of the system

known as the uplink. This is a representation of the effects
of transmitting a signal through the earth's atmosphere to

the communications satellite. Under normal operating conditions,
this functional area within the system may be characterized as

a linear channel, or filter, with additive Gaussian noise at

the output. Since the downlink part of the system is a duplicate

of the uplink, it can be characterized in the same manner.

Sandwiched between the earth-satellite links is that group

of components that are comprised by the satellite transponder.

This group consists of two, almost identical filters, one

acting as the transponder receive filter with the other

filling the role of the transmit filter, and a travelling-

wave tube amplifier. Due to the wide variety of modems that

are used in the earth stations (i.e., the lack of standardi-

zation of telecommunications/data communications equipment),

the filters are required to perform their duties yet be

compatible with most earth stations. In addition, the unique

circumstances entailed by satellite operation require that the

filters be very dependable while economic factors require

minimization of the cost of the system. Hence, the filters

are as nearly identical as possible, relatively wideband in

nature, and perform their functions--restricting the effective

bandwidth of the uplink noise for one and eliminating any

8
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out-of-band signals created by the TWTA for the other--

without introducing any time dispersion or other significant

signal degradation. It is at this point in the system that

all of the nonlinear operation is introduced. Although the

high power amplifier (HPA) used to boost the level of the

- transmitted signal is frequently operated in its nonlinear

region, the effect of the TWTA is dominant and, in any case,

suffices to address the problem of predicting the performance

-. of a typical satellite system.

In Figure 2 the input-output curves for a typical TWTA
A are shown. Although there is a linear region of operation,
w. it is easy to see that maximum power output, and thereby

maximum downlink Eb/NO (energy per bit/noise power spectral

density), is achieved when operation is in the nonlinear

region. For this study, the TWTA shall be considered to

operate always at saturation as is usually the case in

realistic TDMA systems. Looking past the transponder one

sees the downlink, already noted as being identical to the

uplink, and the final section of the system, the receiver.

This section is a mirror image of the transmitter with two

important exceptions. First, the composite receive filter is

similar in function to the transmit filter but does not

bandlimit the signal quite so much therefore introducing less

* .ISI, and second, there is obviously some form of sampling

and decision logic integrated with the demodulator. Thus,

*.- the receiver input is filtered to restrict its bandwidth and

then passed through the demodulator/decision logic from which

the information reaches its destination.

.9
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2.2 Probability of Error Estimation

Now suppose that one wishes to estimate the probability
of error for the system just described. We will only look
at the case of binary pulse amplitude modulation (PAM) since

this reduces the complex envelope to a real signal and is

5 sufficient for illustrative purposes. It can be assumed that

the input to the system is a sequence of binary dat- {b I
]

having a bit duration of Tb. Following modulation, the input

to the transmit filter has the general formR
D(t) a karect (t-kTb()[

rec.~L1~J~b = 1 kTb < t< (k+l)Tb 2

b b
~~rect(t-kTb= 0 elwhr (2) i

b 0 elsewhere

where the rect(t) pulse was arbitrarily chosen for computational

ease and {ak} is the modulating amplitude sequence with

ak = -A or +A when bk = 0 or 1 respectively. With the transmit

. filter assumed to have the transfer function ht(t) and the

*. impulse response

* Ht(t) = ht(t)cos Wot, (3)

the transmitter output, S(t), can be expressed as

S(t) k k akP(t-kTb) (4)

and

S(kTb) = akP(0) + mk kmp[ (k-m)Tb] (5)

1 12
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where p(t) is the shaped, bandlimited signal pulse

p(t) = 0.5(rect(t) * h t(t)] (6)

In equation (5), the first term on the right represents the

k-th transmitted bit while the summation represents the

. residual effect of all other transmitted bits. This second

term represents the ISI that is caused by the bandlimiting

filter. As it passes through the uplink, the signal S(t)

is corrupted by noise, n(t), that can be modeled by a zero-

mean Gaussian random process. Representing the thermal noise

that degrades the signal in the uplink, n(t) is additive in

nature, and hence the transponder input, X(t), can be expressed

- .by

X(t) = S(t) + n(t)

(7)
k akP(t-kTb) + n(t)

Passing through the filtering and nonlinear transformation

of the transponder, the signal as it enters the downlink is

described by

z(t) - fEX(t)] (8)

where f(x) is the input-output relationship of the transponder.

It is beyond this point that the probability of error can be
S seen to have been rendered very difficult to track analytically

since the statistics of both the uplink noise and the ISI have

been altered. In fact, the alteration is frequently such
that it is impossible to separate the effects the two have

on the information-bearing part of the signal.

13



Within the downlink, the signal is again corrupted by

a random process representing AWGN, v(t), so that the input

to the receive filter, U(t), has the form

U(t) - z(t) . v(t). (9)II I :.
If the transfer function of the receive filter is assumed to

be hr(t) with the impulse response I

Hr(t) rt)cos wot, (10)

j then

Y(t) = 0.5[U(t) * hr(t)]

= 0.5 ([Z(t) * hr (t)] + [v(t) * hr(t)]) (11) I

Z n '(t-nTb) + v' (t) 1:1
=n b '

is the filtered input to the demodulator and decision logic.

It is easy to see the complications in predicting the system

BER if one notes that (11) contains ISI that comprises the

effects of a nonlinear transformation of the desired signal

- + noise + transmit filter ISI. For reasons that shall become 1
obvious, we will assume that the statistical properties of

the system inputs, n(t) and v(t), as well as the system transfer

characteristic--four filter transfer functions and the TWTA

transfer characteristic--are known.

At this stage, one is confronted with the actual attempt

to estimate the BER, or P2 (e), for the system. This quantity

is given by

SP 2 (e) = { qY: "=(Y)dy!PrbkI(1< (12)

f qYjb =(y)dy Pr[bk=l]Ik 14

,'
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where K is the decision threshold (typically 0 for the system

modeled by Figure 1) and qy bk(Y) is the conditional probability

density function of the output Y, given the input bk. The

performance prediction problem is thus seen to be that of

estimating the two conditional pdf's. This task is made

quite difficult by the nonlinear transformation that has

altered the statistics of the transmitted signal and the uplink

noise. Additionally, an analytical approach is inherently

inflexible; there is no room for "black-box" modeling of the

system and its components; and is rendered somewhat inaccurate

by the need to approximate the effects of the system non-

0 linearity and the ISI. On the other hand, Monte Carlo
simulation estimates the pdf's by what is essentially the

creation of two histograms. This allows for great flexibility

and the achievement of any level of accuracy desired--although

the effects of ISI must still be approximated by a finite

number of pulses. There is a price that is paid for the

accuracy, however. When there is a random process preceding

the TWTA, such as uplink noise, enough samples must be examined

to allow the process's statistics full reign; this number

is on the order of 10/P(e) (44]. Since a typical BER for a

satellite system is one error out of every 106 symbols, Monte

Carlo methods require about 107 symbols and hence, an

* unacceptably large amount of computational time.

Obviously, the main difficulty in the estimation of the

probability of error arises due to the fact that intersymbol

interference and, more importantly, noise occur prior to the

*O nonlinear amplifier. Just what effects this has and why it

is difficult, and necessary, to handle will be discussed in

the next section.

15
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2.3 A Discussion of the Problem

In an ideal digital communications system, the pulse-

shaping filters are assumed to be ideally matched thus

eliminating any possibility of the occurrence of intersymbol

interference. Even when the filters cannot be matched, as

in the typical satellite communications case where lack of

standardization forces all pulse-shaping to be done at the

a-..!

transmitter, the vast majority of the 151 can be eliminated
through the usage of a good equalizer--if the channel and
filter characteristics are known exactly. Since that condition

is impossible to meet, there will always be some 151 in a
real, bandlimited system; there has, in fact, been a great
amount of work done exclusively on the problem of determining
the effect of the wh on a system's performance [3-[15].
Most of the work already done, however, has dealt only with

linear channels (with additive Gaussian noi'se, of course)
and without this restriction the solution to the problem has

not been easily found.

151, the time-dispersion of a signal pulse's energy that
causes the amplitude of a signal at any given moment to be
dependent on several different pulses, combines with thermal
noise to be the primary causes of errors in a digital system.
In a linear channel with linear filters, the ISI has an effect

Similar to that of noise but non-Gaussian in nature. The
exact analysis of the joint effects of noise and intersymbol
interference involves the computation of a very complex

probability distribution [4],[5]. For practical systems, in
fact, an exact analysis can seldom be carried out [6].

With a little thought, it can be seen that the nonlinear
characteristic of the typical satellite channel changes the
"seldom" of the preceding sentence to "probably never." A
nonlinear transformation of the uplink ISI changes its statistics.

__ 16



As a result, only some of the ISI can be removed by the matched

filter at the receiver. If we assume that ISI arises on the

downlink as well, then the analytical problem becomes even

more of a mess and attempts at finding anything other than

bounds quickly become hopeless.

There are ways to approximate the effects of intersymbol

interference. Analytically, one can find worst-case, best-case

bounds, or, using various series expansions, one can find

somewhat tighter probability of error bounds. These are,

however, still bounds and not the fairly accurate estimations

that are desired. A way does exist to achieve a fairly

*" accurate estimate of the effects of ISI: The enumeration of

all possible values the interference can have and the subsequent

averaging of the P(e) for each value. While this can be done

analytically, the enumeration method tends to be very cumbersome

in most cases (even with the finite number of interfering

pulses that must be assumed), and is much better suited to

* . simulation. Studies have been made that show enumeration in

conjunction with Monte Carlo simulation to be quite adequate

in estimating the effects of ISI on system performance.

Since the argument has already been made convincing us

of the desirability of simulation over the analytical methods

as a performance prediction tool, we can consider the question

• of how one determines the effects of ISI on the system BER

to be answered via enumeration. That leaves only the uplink

noise as a major stumbling block in specifying a prediction

tool for use in designing satellite systems. In many of the
early communications satellites, enough power was broadcast

-'' from the transmitter to make the uplink Eb/No significantly

larger than that of the downlink. This situation meant that

only a very insignificant number of errors were caused by the
0 uplink noise. Thus, the methods that have been developed to

estimate the BER have been able to assume that all of the

17
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thermal noise affecting a system arises at the input to the

receiver. Alternately, if the TWTA could be considered to

be operating in its linear region to avoid intermodulation
(as was the case for most of the early, multi-carrier,

frequency-division multiple access (FDMA) satellites), the

uplink noise was combined with the downlink noise either

linearly or in some other mathematically simple manner. This
approach tended to yield the same effective result as did

ignoring the uplink noise entirely.

In the past few years, however, the number of satellites

and users has grown dramatically while the usable spectrum

has not. More and more, the multiple access technique of choice

and necessity is TDMA. This allows the transponder to be

operated at a much more power-efficient, albeit nonlinear,

level. Operating the TWTA in its nonlinear range means that,

if the uplink noise is significant at all, the (Eb/No)u

cannot be directly combined with the (Eb/No)d with any hope

for accuracy--and the uplink noise is frequently significant.
The necessity of using TDMA now is that the increased numberIof satellites, and hence, proximity, require that less power
be broadcast to each satellite to avoid interfering with

transmissions to nearby satellites. Additionally, there has
been a virtual explosion in the number of small earth stations

5 that are being used, thus compounding the interference problem

and requiring an even larger reduction in the transmitted
power. This reduction in transmit power has been great

•.1 enough that (Eb/No)u is now of roughly the same order as
that for the downlink thereby necessitating its consideration

1 as a major cause of error.

The nonlinear transformation does more than just preclude

the direct combination of uplink and downlink Eb/No's. It

forces one who is taking an analytical approach to the problem

to calculate the nonlinearly transformed pdf of the noise at

18
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the output of the TWTA; aside from being a rather difficult

undertaking in and of itself, it is easy to see that the pdf

" will be heavily dependent upon the characteristic of the

particular nonlinearity thereby placing severe limitations on

the flexibility of the method used as a performance prediction

tool. In addition, most of the work that has been done on

this problem has either ignored the existence of intersymbol

interference [14]-[26] and/or has treated the TWTA nonlinearity

as some kind of limiter (27]-[30].

It is obvious that the ISI and the uplink noise must both

be considered if one wishes to derive an accurate estimate of

a system's BER. Passage through the TWTA causes the two to

"freeze" one another into the signal in such a way that the

individual effects cannot be separated from each other or from

the information-bearing part of the signal. The difficulties

of using analytical methods on either of the effects standing

alone has already been stated. Together, the inevitable

conclusion is that the analytical methods will be inadequate.

Monte Carlo simulation encounters its own problems when

dealing with the uplink noise, although handling the ISI as

well as the uplink noise is not one of them. As mentioned

previously, a typical satellite system BER is on the order of

S0-6 meaning that least 107 bits need to be run through the

simulation to give an accurate error count. The computational

time involved in handling this number of bits makes regular

Monte Carlo simulation unacceptable as a performance prediction

tool.

It immediately becomes obvious that there is a need for

4.6 some modification of the basic Monte Carlo methods that will

- **greatly reduce the number of samples required to acquire a

- good estimate of the BER of a communications system. In the

following chapters, a look at many of the previous attempts

at developing some form of performance prediction tool

19
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(analytical or simulation) will be presented followed by a

study of two techniques that appear to hold the greatest

promise of solving the problem. In addition, a combination 1
of these two techniques will be studied to determine what is

the best performance prediction tool existing at this time.

,20
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3.0 SURVEY OF THE PREVIOUS WORK

From the previous discussions we know that the main

causes of detection error in a digital communications system

are intersymbol interference and additive noise. When a
system is afflicted by the two of these together, exact

estimation of the error probability becomes computationally

complex. If, further, a typical satellite system such as

that shown in Figure 1 is considered, one is faced with the

situation where the transmitted signal is corrupted by ISI

and noise prior to passing through a TWTA operating in its

nonlinear region. In addition, before the decision logic is

reached, the signal is corrupted by even more ISI and additional

noise. Under these circumstances, it is easy to imagine that

the already quite complex task of estimating the system BER

becomes almost impossible.

The necessity of having a performance prediction tool,

however, is such that a large number of approaches towards

solving the error estimation problem have been developed. It
has been mentioned- previously that there are, primarily, two

categories into which the various prediction tools may be

classified. These categories are the result of the fact that

there are two unreconcilable requirements that an ideal

performance predictor should meet. The first of the require-

ments is that the prediction tool be very flexible with

regard to the system components, configuration, modulation

formats, etc. This has led to the growth of Monte Carlo

simulation, in which the system is just a set of "black boxes"

that can be arranged in any desired manner and, further, the

signals that enter the system are treated as random processes.

The second requirement is that the performance prediction tool

21
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deliver answers speedily and with a great deal of accuracy.

An obvious outgrowth of this requirement has been the

development of various analytical methods that attempt to

develop a unified deterministic system model with a set of

parameters from which the performance can be calculated.

While there are some hybrid methods that employ character-

istics of each of the aforementioned techniques, the vast

majority, if not all, may be placed into either the simulation

-- category or the analytical methods category. With this in

- - mind, the following sections will provide a description of

the fundamentals of each different type of approach taken in

* the attempt to find an "ideal" performance prediction tool.
A synopsis of the advantages and disadvantages accruing from

each approach shall also be presented. Most of the literature

reviewed, it will probably be noted, is specifically applicable

to some type of phase-shift-keyed, (PSK), system. Done

- primarily because of the pervasiveness of PSK as a modulation

format, there is no loss of generality in the analyses

presented as, on careful consideration, one realizes that

almost any modulation format can be expressed via PSK. In

the following, the use of PSK as the operational modulation

of discussion will be adopted.

3.1 The Analytical Methods

In Figure 3, a modified version of the digital satellite

- communications system model shown in Figure 1 is presented

for use in discussing the various analytical approaches

taken towards solving the problem of accurately predicting

a system's BER. Although the two models are essentially the

* same, the signal representations of Figure 1 have been changed

V to accommodate the fact that Figure 3 is meant to represent

22
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a bandpass PSK system similar to those discussed in the

literature. Consequently, a brief run-through of the system's

operation is in order.

An M-ary PSK system operates by modulating its carrier

with the phase sequence {oi} where each transmitted phase Ok

is assumed to take one of M equally probable values, typically

k= (1+2z) ) = 0,1,...,M-1 (M even) (13)

If one assumes that the input to the system is binary data,

then each phase angle *k can be considered as representing an

m bit data symbol where M = 2m
. Accordingly, the symbol

duration is Ts with Ts = mTb where Tb is the bit duration.

Keeping this information in mind, we shall proceed to

describe and follow an M-ary PSK signal as it passes through

the system of Figure 3. A phase modulated signal may be

thought of in one of two ways: Either as a constant amplitude

carrier to which the sequence {Ok } has been added, or, as

two amplitude modulated carriers with one of the carriers

delayed 900 relative to the other. In the former case, the

signal at the output of the modulator, Dp(t), would be written

D (t) = A cos [w t + O(t)] (14)
p 0

where A is an arbitrary constant, w is the center frequency

of the carrier (in radians/Hz) and a(t) is the modulating

phase angle. a(t) can be represented as

az(t) k m(t-kTs)rect(t-kTs) (15)

* with the rect(t-kTs ) pulse defined by (2) and serving merely

for reasons of computational convenience and not as a requisite.

24
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As a matter of fact, any pulse of width Ts is permissible.

Bandlimiting, however, creates a cumbersome, if not overly

' complex, signal representation that is not well-suited to

the purposes of this discussion. We will therefore favor the

latter method for representing PSK signals. In this case,

Dp(t) = rect(t-kTs) cos (t-kTs) cos W t - rect(t-kT
p k 5 5 0 S

sin 0(t-kTs) sin wot (16)

=krect(t-kT) Cos (Wt+ 0(t-kT)

and once again, rect(t-kT s ) is chosen for convenience's sake.

Throughout the rest of this chapter, please note that the

time dependence of all variables will be ignored whenever

possible once they have been introduced and defined.

The modulated signal now passes through the bandlimiting

transmit filter that is assumed to have the impulse response

given by (3). From this filter, the transmitter output, S p(t),

"1 emerges with the form

S (t) = p(t-kTs ) cos [w t + 0(t-kTs)] (17)

p(t) = h [rect(t) * ht(t)] (18)

and for kTs 5 . t < (k+l)TI5

Sp = p(t-kTs ) cos [Wot +O(t-kTs)] + ikP(t-iTs) cos [wot+ (t-iTs)]
Ip

- (Pkcos ik + i~ki s) ot ( ski sin i)

sin WOt (19)

00
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which means that

A(t-kTs ) = Ak

- CoS ik 2 (20)((Pk Cos k + i#kPi cos 4i)

+ (P sn k + i~kPi s

p(t-KTs) =k

p. sink + ik sin.i
jk k +i~kPi

- arctan j (21)
cosok +iki

LPk C5k i~k~i s i ii

where Pk= p(t-kTs) and p1 = p(t-iTs). If the time assumption,

kT < t < (k+l)Ts is dropped, then S may again be expressed
S s p

as

Sp = k Ak cos(Wot + 'k )  (22)

where it is seen that Ak = and k= k- In equations

(19)-(22), the ISI effects are shown explicitly and then

absorbed back into the simplified expression of (17).

While traversing the uplink section of the channel, the

signal, S is corrupted by noise, n(t), having the form

n(t) nc (t) cos wot - n (t) sin wot. (23)

In the preceding equation, nc and ns , the inphase and quadra-

ture components of the noise, are independent, stationary,

* -. 26
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zero-mean Gaussian random processes with each having a variance

n2  Since this uplink noise happens to be additive in

nature, the signal that enters the transponder, X (t), may
p

be expressed by

Xp(t) = S + n

_ p

Ak cos(Wot + + nc cos w t - n sin wt
k t+'k c 0 S 0

.'4

k Rk(t) cos[Wot + Sk(t)] (24)

k(t) =[(Ak cos Ank + 

Rk 2
+ (Ak sin + nt) 2 (25)

u n sin k + nhaB (it) =arctan LA ~j(26)
Lk ~k c

wit a biul representing the phase effects of the
upin noise and ISa elas the transmitted phase.

From the set of equations presented above, along with

(19)-(22), it is easy to see that the original PSK signal

has been greatly altered. The overall phase and amplitude

have become heavily dependent upon many different random

-l processes, meaning that the signal presented to the transponder

has a variable amplitude across each symbol--a situation that

can have much significance vis' PM(e), the error probability.

As mentioned earlier, the typical TDMA satellite communi-

i cations system operates with its transponder delivering

maximum possible output power. This, of course, means that

the TWT amplifier forming the heart of the transponder is

I' 27



operated within its nonlinear region (recall Figure 2). The

resulting AM-AM and AM-PM conversion effects, expressed as

f(-) and g(-) respectively, mean that the varying amplitude

of the input signal produces a randomly variable phase error

rather than the predictable one of an ideal PSK signal.

Consequently, the ISI and uplink noise find that they have

-"frozen" one another into the signal. The signal that is

output to the downlink from the transponder, Z p(t), can

therefore be described by

Z (t) = k f(R) coS[wot + a - (27)

p k k swo k gR)

It is, at this point, already easy to comprehend that the

effects that the uplink noise and ISI have on the system BER

has severely inhibited its analytical tractability. Not only

have the statistics of those two primary causes of signal

degradation been altered nonlinearly, but they have become

increasingly intertwined with one another and with the desired
part of the signal. So much so, in fact, that it is impossible

to assess the impact of one or the other by itself.

As if the analytical problem hasn't been made difficult

enough at this point, the signal is once again corrupted by
noise. Like that of the uplink, the downlink noise, v(t),

0 has the form

v(t) = vc(t) cos Wot - V(t) sin wot (28)

where vc and vs are equivalent to their uplink counterparts,
2

nc and ns, although having a unique variance ar which may or

may not be the same as an2  Since v is also additive in

nature, the input to the receiver, U p(t), can be written as

28
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Up(t) = Zp + v

f() t + k  g(Rk)] + v COS WOt
k -k) costw c

v sin Lot (29)

k Wk(t) cos[wot + 8k (t)]

Wk(t) = [(f(R) cos[Bk-g(Rk)] + vc) 2

I (30)

+ (f(R) sin[$k-g(R)] + vs)2]

rf(R) sin ak+ vs
Ot)=arctan I _ k(1[90k~t) =Larctan (Rk ) Cos ak + vc

with ek representing the cumulative phase at the receiver

input.

Passing into the receiver, the signal once again encounters
a bandlimiting filter. Although not quite as narrow as the

bandwidth of the transmit filter, the receive filter bandwidth

is still sufficiently small to introduce some ISI. With the

*. assumption that this filter has the impulse response given by

(10), the filter output, Y (t), has the form
p

"'. Y Ct) = E
p k j Pk(t-JTs) cos(wt + 6k) (32)

Pk(t) = [Wk(t) * hr(t)] (33)

Recalling (19), if we now restrict our discussion to the

.. time period jTs < t < (j+I)T s , the filter-output may also

be written

29
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Yp k Pk(t-jTs) cos(Wot+6k) + k nj Pk(t-nTs) cos(wot+ek) (34)

where, as usual, the second term on the right side represents

the ISI. It can be noted that Y is a double summation due
p

to the ISI introduced by the receive filter. This shows the

additive nature of multiple sources of ISI in series. Y passes

now into the demodulator where it is demodulated and sampled

and where the decision is made as to the value of 0j.

It is at this point that one is faced with the problem

of analytically determining the probability of error for the

system. If we denote the probability density function of Yp

given that the transmitted phase * = *j, as q(Yl = *j, and

if j= Pk(t-jTs)' n = k P(t-nTs), then the expression for

the error probability is

PM(e) = 1 - Pr[Oj - !-(1+2j) < 0j + (t) < +j)

= Pr[ Aj(t)I > -Z(l+2j)]. (35)

[ P sin 6 + P. sin 6k
= k n~j n kj 36A(t) = E (36)

P pj Cos 8k  + nj pn sin ekL 0 cs k +n~j ~n k

Even when one assumes, as we do, that the statistical proper-

ties of both noise functions and *i are known, the determination

of the pdf of A, q(A), is an extremely complicated process.

The development of the various analytical methods has

followed a fairly straightforward, more or less chronological

path. In much of the early work, even before satellite systems

-. became the primary genre under consideration, the methods

* ;concentrated on how to determine the effects of ISI in con-

junction with additive noise. The systems dealt with were

o.-r
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primarily linear PAM systems with additive Gaussian noise
and ISI arising either because of mismatched transmit and

receive filters or other reasons. As satellites became more

common, designers were faced with two-link systems containing

a nonlinearity. Consequently, the next step along the path

taken considered nonlinear systems with additive noise on both

* the uplink and the downlink. These approaches, however,

tended to ignore the existence of 151. Concurrently, some

researchers examined nonlinear systems with intersymbol

interference but no noise on the uplink. Logically, therefore,

the final path taken has been the consideration of systems

containing all three sources of signal degradation. That is,

the consideration of systems similar in nature to that shown

in Figure 3 with additive noise on both the uplink and the

downlink and a nonlinear satellite transponder. In the

following, the summaries of the literature will be grouped

by the complexity of the class of systems with which they

have dealt.

3.1.1 Approaches to Linear Systems with

ISI and Additive Noise

At the lowest level of complexity are those approaches

* -~whose sole purpose is the determination of the effects of

intersymbol interference on the performance of linear systems

in the presence of additive noise. As can be surmised, the

majority of this work was done at a time when FDMA systems,

with their resulting linear operation, were the only type

being used. Nonetheless, the work that is summarized herein

I forms the basis for much of the later work and is, therefore,

important.

I.31
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Figure 4 shows a model that may be used to represent a

linear system with additive noise and ISI. Given that this

system has the same input to the transmit filter as the

system of Figure 3, then the receive filter output, r(t),

- will be similar in form to that of X described previously.

Namely, for kT s < t < (k+l)Ts, and with

Dp D rect(t-iTs) cos(W t + i)  (14)

r(t) = p(t-kT ) cos(wot+0k) + ikP(t-iTs) cos(wot+Oi ) + n

os[ C + i~k P c O i+ no ] cos W t

[PkCo O ik i os i c o

[sin +ip sin nI5 w t-[Pk si k + iflk Pi Sin Oi + 'c ] 0i .o

= r1 (t) cos Wot - r2(t) sin ot  (37)

where n is the same as that of (23) and p(t) is

p(t) (rect(t) * (ht(t) * h (t) * h (t)). (38)

In (38) above, h c(t) is the representation of the effects

the linear channel between the transmitter and the receiver

has on the transmitted signal.

A fundamental approach to determining the effects of ISI

in any type of system is that of finding the worst case bound.

An upper bound to the probability of error may be found by

assuming that the ISI always takes its largest value. This

bound is, in general, a very pessimistic one since the ISI

*0 only assumes its largest value with a very small probability.
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Another very basic method of determining the effects

of ISI is to obtain a lower bound to the BER by considering

only a finite number of the interfering pulses. Jones (3]

discusses how this is done for a linear PSK system containing

ISI and AWGN. His conclucions are that this is a very

cumbersome method of calculating ISI effects even when one is

only dealing with the effects of an adjacent pulse. If,

however, the ISI due to distant pulses is large, one comes

upon a situation wherein the bound obtained is very loose

and cannot be made significantly tighter due to the length

of the required computation.
With crude upper and lower bounds realizable, using

- worst case analysis for the former and direct enumeration for

the latter, the obvious next step down the path was an

attempt at tightening one or both of these. In a 1968

paper, Saltzburg [4] has presented a tightened upper bound

on the probability of error for a linear system utilizing

multilevel pulse amplitude modulation (M-ary PAM) having

ISI and additive Gaussian noise. Using what is known as the

Chernoff bound, in which

Pr[z > x] < exp(-Xx) E[exp(Xz)] X>0, (39)

where E(y] is the expectation of y, a bound is found that is

the equivalent to the exponential part of a normal distribution

where the larger ISI components act to reduce the signal level

and the smaller components add to the noise level. With

the basic system of Figure 4 being considered, the PAM signal

input to the demodulator can be thought of as the amplitude

of the inphase component of an M-ary PSK signal. In other
words

r akPk + n (40)

0-



and

r(mT ap(O) kO amkP(kTs) + nc(mTs)

= amp(O) + k 0 Zk + nc(mTs) (41)

= a p(O) + z
m

where p(t) represents the convc.lution of the transmitted

pulse with the bandlimiting channel filter, nc is the thermal

noise, and the summation in (41) represents, of course, the

ISI. If the sequence (ak) has the M equally probable values

aj -- 2. - M - 1 j = 1,2,... ,M, (42)

then the overall symbol error probability is given by

P 2(M4-) Pr[z > po ]  (43)

with pi = lp(kTs). The Chernoff bound on the probability

of error is presented as

* (-- .p-(M-l) p(]2

PMe exp ( (44K)
n) (M+1) (M-l) kK(Pk) 2

i hre°2

where a is the variance of nc , keK Pk < is a working

constraint, and kcK represents those interferers that are

assumed to subtract from the signal while k/K represents

those that add to the noise. After presenting this, Saltzburg

gives a method for optimizing the set K for the minimization

of the bound. Finally, (44) is applied to the case of ideal
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bandlimited signaling with bandwidths at the Nyquist level

and below by way of example.

'- Following the concepts mentioned above, Lugannani [5]

presents a variation on the development of the error

probability expression. He recognizes that a weakness of the

Chernoff bound is that it is progressively more inaccurate

for small boundry values, i.e., for small values of x in

pr[z >x]. Consequently, the error expression is divided into

two terms only one of which has a Chernoff bound applied,

and that term has a factor that is small when x is small thus

reducing the uncertainty introduced in the bounding process.

* Additionally, the bound used is computationally simpler than

that used in (44) yet is constrained to always being no worse

than the worst case bound. The system model used by Lugannani

is the same as that used by Saltzburg with the exception

that M = 2 in order to simplify the analysis. Due to the

separation of the effects of the ISI and the noise, the

demodulator input at time t = mTs is written

r(mT) = amp(O) + a p(kTs) + nc(mTs)

(41)

Sam p(O) + zm + n (t)

and the expression for the probability of error evolves into

P2 (e) = Pr[Inc(t)I _ po2 o.

, .(45)

+ fJoq(po-s) - q(p+s)] Pr(IzmI > slds
0 ~ 0

S'where q(.) is the pdf of nc. If it is assumed that B(O)
- represents the worst-case ISI and a2 is the variance of the

ISI term, then the bound presented in this paper can be

derived from

360 p
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Pr[(Zm > s] < min [2exp(-s 2/soz, (s)] (46)

with x(s) defined by

1 0 < s < B(0)X (s) = -- (47)
0 B(0) < s

Given the following definitions,

(48)z

2 z2
= 2 + 2(49)

a a

S= SB(0__) (50)
z

and

* n = min X, In 41, N = max (X, in 41, (51)

I = (1i- y 2 )- (52)

co o

P2 (e) A . -nyu (s)ds + D+yu(s)ds

+ y exp[- n2 (1-y 2 )] f in 4 ny

"- f"u-ny(53)"-- N 4 + nY

y exp(- n2 (1-y2 )] f'' + 2(s)ds
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where (s) is the normalized Gaussian density function.

Following the derivation of the bound in (53), three

S- . different pulses: An ideal bandlimited pulse, a fourth-

order Chebyshev, and a Gaussian are used as examples to

compare the results of (53) to those using worst-case bounds

and to the truncated pulse train method similar to that of

" [3]. In comparison with £4], (53) is seen to be tighter

in all cases, with the possible exception of those where

the No's are very small and K is optimized. In addition,

- (53) is considerably less arduous to compute.

The next logical step in developing an upper bound on

L" the PM(e) due to ISI and additive noise was an extension of

the bounding techniques of £4] and [5] to M-ary PSK modulation

schemes. Dealing only with coherent PSK, Prabhu [6] applied

the methods and equations of [4] to binary and quarternary

PSK signals. In the former case, he notes that the modulation

is, effectively, only applied to one of the two orthogonal

carriers and thus, the situation is the same as that in a

binary PAM system. The bound arrived at for BPSK is therefore

the equivalent of that given in equation (44). Finding a

-. bound for the QPSK case is a more complicated, albeit very

* -. slightly, task than that for BPSK. With the (normalized)

desired signals on the inphase and quadrature carriers

* defined as a and bO respectively, and with the (normalized)

combined ISI and noise for the two denoted by z a and zb

respectively, the error probability for a given phase
= k can be written as

0k

P4 (e) = Pr[ao+za < cos k] + Pr[bo Zb < sin

-Pr[ao+za < cos *kand bo+Zb < sin t
(53)

= Pr[(ao+za, bo+Zb)E RiUR 2]

- Pr[(ao+Za , bo+Zb)ERifR 2 ]

o- 38
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where R, and R are regions of probability space as seen from

Figure 5. Due to the intuitively small probability of

R 1RR 2 0, Prabhu applies the "union bound"

P4 (e) < Pr [ [(ao+Za , b0+zb) cRl] + P ((a o+Za, bo+z b ) 2  (54)

in a move that can be seen to reduce (53) to a sum of two

BPSK bounds--one for each carrier. Following the development

of the bounding equations, several graphs are presented

showing the performance of various pulses as a function of

the number of poles in an RF filter and the filter bandwidth.

An extension of Lugannani's error bound to M-ary PSK

systems is made in [7]. Following the same developmental

process. as in [5], Koubanitsas splits the error expression

in two parts and applies the same Chernoff bound to the term

representing the effects of IS:. Since, for general M-ary

systems, one always encounters the form of the error probability

expression as given in the paragraph above for the QPSK case,

the union bound has been applied for simplification of the

computations. The final result is the sum of several error

and co-error functions. There are several graphs presented

comparing the bound that was derived with various other

bounds including that of (5].

Using the Chernoff bounding theory, however, is not the

only approach that has been taken towards finding the effects

of ISI on the BER of a linear channel. In a 1974 paper,

P. J. McLane [8] developed a lower bounds on PM(e) that, when used

in conjunction with any of several previously developed

upper bounds, specifies the degradation due to ISI and noise

to a finer level of precision than that gained in using an

upper bound alone. Considering the same system as [4] and [5]

with the ISI assumed to remain effectively constant beyond

some finite number of pulses, N, and to have a symmetric pdf,

39
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then the input to the demodulator at t = mT s is written

N/2

r(mTs) = aMp(O) + " akP(kTs) + nc(mTs )k=N/2
(41c)

amP(O) + z + n (mTs)

with the ISI from all pulses beyond I assumed to be 0.

The k denotes summation with the exclusion of the k=0 term.

If it is assumed that

Gn (x) = Pr(n c > x)

1 - F (x)
n

where F (x) is the distribution function of n c , then the

expression for the error probability may be given in the form

P2 (e) = (Ez [Gn (p + Izml)] + Ez [Gn(Po- lZml)]) (56)

m m

with Ey[g(y)] denoting the expectation of g(y) with respect

to Y. At this point, a final condition is placed on the signal:

for xEX, G (x) is assumed to be convex. An application of
n

* Jensen's inequality is, therefore, allowed and yields

% . P(e ) > (GnP + E(I Zm) ] + G[P' - E(iZ)) (57)

-I or all po E(jZm1) EX. Since, in general, E(IZm1) is almost

impossible to compute, upper and lower bounds for this term are

needed. The upper bound is shown to be az whereas two lower

bounds, bi , are given as

o41
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b '=" 4 (59)"[:.[ 2 = B(0)

where the use of b, yields what is known as the "fourth

moment lower bound" and b2 the "ratio lower bound." McLane

proceeds to present several graphs showing his bounds and

those of some others for various signal pulses and values

of N.

* A developmental branch of the analytical methods that

arose concurrently with the bounding approach uses the Gram-

Charlier expansion of the ISI (or ISI + noise) pdf to allow

direct evaluation of P(e) to just about any desired level of

accuracy. In a 1971 paper, Shimbo and Celebiler [91 first

introduced this method, applying it to binary PAM signals in

the system of Figure 4. In a parallel to the work of Saltzberg

[4], the particular approach used involves the expansion of

the pdf of the noise + ISI. The demodulator input, therefore,

has the form of (41a) for t=mTs and the probability of error

can be written as

*= P2 (e) = [1 - Pr(IzI <p)]
(60)

= ( -Qe ) .

Se' as given above, can be expressed in terms of the distribution

function of Z; fz(z), which in turn can be expressed as a

Fourier transform of its characteristic function. Since the

characteristic function of the ISI and the AWG noise, Qe'

is given as

42
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Qe Fz(p) - Fz(-P )

(61)
1 sin (pou )  2

-
1 0 S Uc ( Cos piu) exp(= an2U )du

1 n

where the infinite product of cosines is the characteristic

Ifunction of the ISI and the exponential factor is that of the
noise. an is the noise power. If the following definitions
are allowed,

2y a .+ E j d= E , (62)
2 =n 1 S=Po/ k / 1 dk2

the Qe can be rewritten as

S1 =,sin (su)22
Qe = sin u) exp( hu 2) (R cos aku) exp(- u2 )du.

(63)

The Gram-Charlier power series expansion

2 C00 2k
exp( au )(1I cos aku) = 1 + z b2ku (64)1 1

can now be applied and the resulting expression for the error

probability is

P2 (e) = erfc(s/2) + Z (-)kb G (S) (65)
2

when Gk(s) is the k-th order Hermite function

(-I)k  dk 2
Sd-- " - (exp -s2

(27r) ds

I43
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Gk+]Cs) = SGk(s) - kGkl(S) (66)

The coefficients of the series expansion, b2k, are found to

be expressed as the recurrence relation

kb2k = 1 k (67)
2k RE bl2k-2 nd2n-1n=l 1

where bo = 1 and d-2nl is the product of the (2n-l)-th

coefficient of the power series expansion of tart u by the
2n

sum Elo ak ; dl = 0. In equation (65), P2 (e) consists of

two terms, the first of which can be thought of as the error

due to additive Gaussian noise of power a2 and the second as

that due to the infinite ISI. If the intersymbol interference
2. 2power, Zl=(Pk )2 is smaller than the noise power, a n , then

(65) will converge rather quickly. If, however, the ISI is

large compared to the noise power, convergence will be slow,

and thus, another expression for P2 (e) is given that causes

the rate of convergence to increase:

P (e) = 1 erfc(si/2)+ E(-1) bG (si) (68)2-i2

*" with

=~~ p-f E ()2] j+
o:. = Po/[U'n + =rjp ] L1 t al 2' .... t -l

a- <k"= k jr-+ (p )21' (69)

L"V L = 2 r
-1

L 2
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i This means that the error calculation becomes the enumeration

of the ISI for r-I terms. A method of calculating the

resulting truncation error is presented and (68) is applied

to various pulse shapes as a function of L and compared to some

previously developed P2 (e) bounds.

Once again, the next logical step in the development of

the series approach was an extension of the work of [9] to

M-ary PSK (CPSK) modulation schemes, and once again Prabhu

was the one to perform such an extension. In [10] such an

extension is made. After passing over the binary case with

just a few brief comments, the case of quarternary PSK is

chosen as the primary vehicle for development of the bounds.

Utilizing the same demodulator input signal as in [61, an

expression for the error probability given that 0k = at t = to

is

P(e1~k=L) = 1 - Pr[a(t )+z (to ) >0 and b(t )+z (tO ) >01 (70)
k 4 o a o0 0 b o0

If it is now assumed that the major interference terms

correspond to -N1 < M < N2 , N = N1 + N2 , then the conditional

probability can be written

P(el - Pr[yn+YR>YOC and ZN+ZR >- o (71)

where

Y N -- n c (t o +  A

(72)

•YR Am ' E[YR] = 0

45
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SN -S(t) + IT
0 meA M

(73)

ZR m kAm Ez r ] = 0

X am(y o) - E[am(to)]<.0 m

(74)

Tm  b(t) - E[b(to)

and

A a(to) + O E(am(to)]

(75)

X05  b(to) + 0 E[bm(t)]

From this point, it is shown that the bounds for the probability

of error can be written as

F (-Yoc-A) + F Z(-Yos-A) - F (-y oc+ A,- +A)
N N YNZN os

-Pr YRI>A] - Pr[IzRI>A] P(elk=.) _ FyN

(76)

+ Fz(-yo +A) - F (-y -A, -Yo- )
ZN 05YNZN O

+ Pr(IYRI>A] + Pr[IZRI>A]

where F (x) = Pr[y <x] and A is any real number. Following
y

this, Prabhu uses the Gram-Charlier expansion to compute the

F()'s and proceeds to present a method of bounding the

error whereby
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Q (mcA) - 3(4) < P(e) Q (mcA) + 6(A) (77)

with Q(-) the series expression of the probability of error

due to the ISI terms where mea and S(W) is the truncation

error for those terms mcA. Bounds for 6(A), and hence for

P(e), are shown to be computable using the Chernoff technique

and the optimization of A is performed the same way as in

[4]. An extension from QPSK to general M-ary PSK is discussed

and several graphs and diagrams are given showing the

performance of this approach.

3.1.2 Approaches to Nonlinear Systems with

Additive Noise Only

As the number of satellites and satellite users grew,

it rapidly became apparent that the power and signal-bandwidth

limitations inherent in FDMA were bound to doom the technique.

TDMA was obviously the solution to the problem, yet the

operation of the satellite transponder to achieve peak power

efficiency created its own problem: a nonlinear TWTA transfer

characteristic. It became, therefore, necessary to determine

the effect of this nonlinearity on the system performance.

The next level of complexity in the approaches to the performance

prediction problem--above and beyond those dealing with the

effects of ISI and additive noise in a linear system--are

those attempts at the determination of the effects of additive

noise in a nonlinear system. Obviously, some of the noise

must be assumed to appear at the input to the TWTA (i.e., the

uplink noise) and, indeed, all of the work summarized herein

makes that assumption. Descriptions of the various approaches

to this problem follow. It should be noted that various and

sundry reasons are given for ignoring the existence of ISI and
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that these reasons will be mentioned within the summary of

each approach.

In Figure 6, a model of a nonlinear system with additive

noise is shown. As could be surmised, it is almost identical

to that of Figure 3 with the bandpass nonlinearity representing

the whole transponder and without the bandlimiting character

of the transmit and receive filters. Given that this system

has the same modulator output, Dp, as does the system of

Figure 3, then the input to the bandpass nonlinearity is

SXp =S + n
-~~ p p

[p cos~wot+q~)] + n cos w ~t -n 5 sin w t
(78)

" Ri (t) cos[W 0t+8i(t)]

R.(t) pi cos -i + nc)2 + i sin i + ns) 2) (79)

(t) = arctan ins (80)

[ picos 0i + n:]i

where n is the same as that of (23) and p is the same as that

in equation (17). For a particular time, kT s f t < (k+l)Ts ,

it can be seen that there is no ISI present. Passing through

, 0the bandpass nonlinearity, once again described by f(.) and

g(.), the signal at the input to the receive filter can be

given as in (28) exclusive of the effect of the ISI introduced

by the transmit filter of Figure 3. Since there is also no ISI

0as created by the receive filter, the demodulator input for

the time kTs _ t < (k+l)Ts can be expressed by

48
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Yp= ok coS(W t + ak)  (81)

where Pk is as written in (33) (excluding the ISI that

affects Wk as was previously noted).

Although some earlier work has been done on the system

of Figure 6, one of the first approaches to the problem was

presented in a 1972 paper by Davisson and Milstein [14].

This approach comprised two parts, the first concerned the

case of a one-link system where the downlink of Figure 6 is

excluded and the second being concerned with a two-link

system similar to that in Figure 6 with a second bandpass

nonlinearity at the receiver input. All of the nonlinearities

are assumed to be identical limiters having the transfer

characteristic shown in Figure 7. Additionally, both the

one and two-link systems are assumed to have a demodulator

output that is the result of shifting the signal down to

baseband, integrating for Ts seconds, and sampling.

In the first part of (14], the modulation scheme given

is BPSK and the input to the bandpass limiter, therefore, is

Xp= (R cos Ok) coS(wo t + k )

(82)

= Vki(t) cos(wot + 8k)

where all of the variables are as previously defined and

= 0 or w. Since the limiter only has an AM-AM character-

• istic which we can describe by f(.), then the output of the

limiter is

Z =f(Vki) cos(wot + k)
p

(83)

= Vko (t) cos(Uot+ k)

0 " 50
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and the sampler output, d(t), can be expressed, for

t=(k+l)T s f, as

(k+l) s
d[(k+l)T ] = Sk Vko cos k dt. (84)

It is noted that (84) is a stochastic integral that, in

general, has an unknown pdf. To make the theoretical analysis

tractable, the baseband detector is henceforth assumed to be

of the sample-and-sum type instead of the integrate-and-dump

as was described previously. If, further, k=0, this

assumption yields

T N iT iTs
dTsE VIo-Js cos Bk(85)

i=l

With the noise power spectral density assumed to be flat over

a bandwidth equal to 2 (2 Trfc), N is chosen to be 2 fcTs in a

move to insure the independence of the samples in (85). At

this point, the term to the right of the Z in (85) is defined

as

.li= Vko cos 8k (86)

and the error probability is

P2 (e) = Pr( i < 01 k )

(87)

(2f T
+ Pr F , Oi > 0 k
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from which it can be seen that the calculation of P2(e)

requires that the probability density of ai be known. This

pdf is derived and is given by

0f JaI > 1

2 eA(E'a-X) [erf (l-a 2 ) E')-

q() = (88)

+(2/ir) expLIh X(1 2)a (l-a2)01

+ Xaerf(Xa-e')] lal

where

Rk
X 2 (89)S2 ' £= 2

n n

and

A(x) =(27 exp(-x /2). (90)

The derivation of (88) should be noted as being somewhat

complicated and evaluation of P2 (e) is performed by using

a computer to perform the necessary 2 fcT numerical convolutions

of (88). A graph is presented showing the relative performance

of the system as calculated from (87) as a function of the

-. c/p ratio and in comparison to the "continuous-time linear"
0

system performance. It is seen that the closer the limiter

comes to being an ideal hard limiter (e=0), the more the one

link system performance is degraded--up to 2 dB for a BER of

10 in the ideal case.

For the two-link system previously mentioned, Davisson

and Milstein are effectively just repeating the work of the

first part of their paper. Although they discuss a variation
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of the two-link system that was studied by I. Jacobs in a

1965 paper, it is a very limited discussion even though there

is an extensive expansion and solution of the error equation

given by Jacobs presented in an appendix. The sum total of

this study of a two-link system with two bandpass limiters

was that graphs were generated comparing the performance of

the authors' system, the system studied by Jacobs, and a

similar linear system for three different values of N = 2 fcTS ,

the number of samples taken. Resulting from these comparisons

is the conclusion that multiple limiters, with and without

Jacobs' clipper, enhance a system's performance, particularly

for small values of N, over that expected for linear systems

with the same number of noise sources (>2). This is in contrast

to Jacobs who predicts enhancement only for small BTs products.

Following the developmental process initiated in (14],

one could presume that the next logical step would have been

the extension of the nonlinearity's characteristic from that

of a limiter to a more general case. Additionally, one might

also expect an extension of the modulation format to a

generalized M-ary PSK one. This was indeed the situation in

a 1973 paper by Lyons [15]. Using analog PM notation in

analyzing the effect the nonlinear transponder has on a signal

(an acceptable technique that is notationally convenient and

can be generalized with ease to the PSK case since there is

no bandlimiting), the transponder output is the same as Z
p

of Figure 6. Lyons, however, separates Z into the desired
p

and undesired portions of the signal. Recalling that (using
analog PM notation)

Zp f(R) cos~w0t + + y(t) g(R)]. (91)

5 where R and t are the analog representations of the previously

defined ((78)-(80)] variables RK and k' and y(t) is the
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phase error due to the uplink noise. The desired portion

of the signals, Z' (t), is found by taking the expectation
p

of Z conditioned on the known value of w0 t + 4. This yields

Z (t) = A coS(w t + 0-n) (92)
p 0

with

A E(f(R) costy - g(R) + n]) (93)

and

n(E(f(R)[sin,- g(R)])

= arcta \E(f(R)Lcos y g(R)]) (

Obviously, therefore, the unwanted portion of the signal, the
"pseudo-noise," n'(t), may be written as

n'(t) = Z '-Z = nc (t) cos(wot+O-n) - n s (t) sin(wot+p-n)
p pos

(95)

n c (t) = f(R) cos[y - g(R) + n] - A (96)

n' (t) = f(R) sin[y - g(R) + n]. (97)

The downlink noise, v, now combines additively with the

"pseudo-noise" and the path that needs to be taken becomes

pretty clear albeit exceedingly complicated. To reduce the

complexity, Lyons makes the assumptions that, 1) a number of

samples of the received phase, N, are taken over one symbol.duration and, as in [14], to insure their independence

N = 2n+l ; 2fcTs , and 2) the detector operates by majority

• decision logic. Taken together, these two assumptions make
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the error probability the probability that n + 1 samples

are incorrect; this is given by

/2#.l k) 1n-k (8
PM(E) = (In (1-PM(e) ][PM(e) ] (98)

M ~k=0k

where PM(e) is the probability of error for a single sample

PM(e) = Pr[I1I > T/M] (99)[n + +vs]
6 = arctan A (100)

*[A +2 +vC

To solve (99), it is necessary to know the joint pdf of

n', n', v', and vs. Since n and v are assumed to be

statistically independent with known pdf's, then the solution

can be achieved just by calculating q(n c , ns). A general

method of doing this is given. An example and related graphs

are presented for the case in which the bandpass nonlinearity

is a limiter (similar to the limiter of Davisson and Milstein's

paper). The graphs are given as functions of the signal-to-

noise ratio (SNR) and the B Ts product. As in [14], the

limiter is seen to degrade performance in the absence of down-

* link noise and enhance performance in its presence when (SNR) u

(SNR) down for the BPSK case--although not for QPSK or 8-PSK.

Overall, Lyons notes that the system degradation due to a
" * hardlimiting nonlinearity is an increasing function of M, the

percentage of the total noise that is found in the uplink, and

the BnTs product, except for BPSK when the downlink noise

dominates in which case the performance is enhanced.

Extending the work done in [14] and [15], Jain and

S--Blachman (161 look at the system of Figure 6 with a BPSK

modulation format and an ideal hard limiter as the system

nonlinearity. The primary intent of their study was to justify
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and demonstrate the desirability of limiting via an accurate

method of calculating the error performance. Making the same

assumptions vis' selection of the number of samples taken

per bit as we have discussed previously, the error probability

expression becomes that presented earlier by Lyons (98).

Since the possible values of the modulation phase are, as

usual, considered to be equally probable, the calculation of

PM(E) devolves into the calculation of the error probability

PM(e) for any one sample of the received signal. Due to the

ideal nature of the limiter, where f(.) = 1 and g(.) = 0,

the transponder output is written (in analog PM notation) as

Zp = cos(wot + a) (101)
p0

=arctan [POsin +
Lp Cos 0 + nJ

(102)
; ns  .

= arctan oc  1

I.,. and the receiver input as

Y a cos(w,0 t+a) + vc cos wt - vs sin w0 t (103)

where a is determined by downlink losses, etc., and heretofor

has been assumed to be unity. With a coherent demodulator

and remembering that sin(nn) = 0 for all n, the sampled base-

band representation of Y becomes
p

r(to) = a cos 8(t o ) + Vc(to). (104)
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In order to find P2 (e) it is now seen to be necessary to

determine the pdf, q(r), of the sampled output. From the

.-.. known pdf of vc and (104) this is obtained by convolving the

pdf of the phase a with that of the noise yielding

i '" 2 f2f -(r-acos 8))

q(r) = (2ra) ) 2 exp ( ) q(8) ds.
2c" v (105)

If it is assumed that the transmitted bit is a 1 (0 = 0),

P2 (e) can now be written as

P2 (e) = f 0 q(r) dr

2[ f1T -(r-acos 6)2) d

- fo q (  (2a) f -v dr dB

- - ,f2erf (a(2(ov) 2]- cos 8) q(S) dB (106)

from which it is easy to see that P2 (e) is unaffected by the

limiter when all of the noise is on only one of the two links.

It should be noted that this conclusion contradicts [14] for

the case of no downlink noise. The error function is now

expressed in the form of a Fourier series containing an

• integral, the solution of which is given in terms of a confluent

hypergeometric series. Consequently, the probability of error

is expressed by

P2 (e) fi [i- 2 ni0 (-l)nr(n+ ) [a(2av2 )- ]2 n+l

(107)

1Fin+ , 2n+2, 2-V2] °  cos(2n+1)3] q(S) d
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where IF1 (.) is the confluent hypergeometric series and

r(-) is the gamma function as usual. Following the derivation

of (107), three different yet equivalent expressions for

P2 (e) are presented. In the first, an integral representation

for q(8) (for a specific value of 0) and a convergent infinite

series solution is developed. The second expression, again

a series solution, is conjured up by using a relationship

whereby the confluent hypergeometric series is a function

of two sequential modified Bessel functions. Lastly, an

equivalent to (107) is developed through the use of a closed

form representation of q(8). This leads to an evaluation of

(106) that gives P2 (e) in terms of Rice's Ie function

Ie(k,x) =J exp(-t) 1 0 (kt) dt. (108)
0

For the special case when SNRu = SNRd = p the error

probability is simply

P2(e) = exp(- Pi2). (109)

Jain and Blachman proceed to give numerical results comparing

their three P2 (e) expression vis' ease of calculation and

accuracy and then move on to the comparison of system per-

formance with and without the limiter. These latter comparisons

indicate that the limiter produces a 2-3 dB performance

enhancement for large uplink SNR (> 10 dB) and a somewhat

smaller magnitude degradation for small SNR on the uplink.

The authors conclude their work by deriving an optimum

nonlinearity to enhance system performance.

A fairly complete picture of the effects a limiter-

type nonlinearity has on the performance of wideband satellite

systems with AWGN on both the uplink and the downlink has
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.[ been presented by the preceding papers [14]-[16]. Obviously,

the next step in the analysis of this kind of wideband system

is the consideration of a more realistic type of transponder

nonlinearity. This step was taken and is discussed in a 1976

paper by P. Hetrakul and D. P. Taylor [17]. Using a

°- quadrature model of the TWTA, the authors developed a model

wherein the inphase and quadrature AM-AM characteristics,

FI[R(t)] and FQER(t)] respectively, are assumed to take the

form (with the time dependence of R(t) taken for granted)

2 2FI(R) = C1 R exp(-C R I (CR (110)

2 2
FQ(R) = SIR exp(-SR )I (S R (111)

where In(. is the modified Bessel function of the first

kind of order n. Using any TWTA whose transfer characteristics

are known, the coefficients of these equations can be found

through the use of the fundamental least-squares curve-

fitting techniques. For illustrative purposes the authors

determined the coefficients for the TWT used on the Intelsat

IV satellite; equations (110) and (ill) are shown to yield

very close fits to the characteristics of the TWTA in question.

Representing the signal in the manner introduced by Lyons,

Hetrakul and Taylor present an expression of the pseudo-noise

pdf's that is in the terms of a Gram-Charlier expansion.

Using the notation of the inphase pseudo-noise term,

0b

fn m (x) = 2) exp x2/2 an'c k0 - -kE-*1

(112)

where Gk[.] and b2k are used as defined in [9]. The

quadrature term, of course, has the same form.
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Following the determination of (112), the authors

*proceed to give examples of BER determination for BPSK systems

with both a majority logic receiver and a matched-filter

receiver. Performance of the two receiver types is compared

and it is seen that the quadrature model of the TWTA that

has been introduced yields results that agree with those of

Jamn and Blachman (16] for the case of the band-limiting

nonlinearity. Substantiating evidence for the results is

given in the form of a graph. After concluding that the
performance calculations can be extended to the M-ary PSK

* system, an example of the numerical calculation technique

used in the example to derive the moments of the inphase

noise component is presented along with proof of the absolute

convergence of the derived BER expression.

A different approach to the consideration of a more

realistic type of transponder nonlinearity can be found in

a 1977 paper by Forsey, Gooding, McLane, and Campbell [181.

* Whereas the authors of [171 developed a unique quadrature

model of the TWTA, Forsey, et al., stick with the previously

introduced method of using the generalized methods of

representing the AM-AM and AM-PM transfer characteristics

as f(-) and g(-) respectively. Further, the previously

* discussed paper utilizes the "pseudo-noise " representation

4.|

of the transponder output that was derived by Lyons [15] while

(181 follows the analysis techniques of Jamn and Blachman

in [161. In fact, the work presently under scrutiny is just

a generalization of the analysis presented by Jamn and

Blachman for hard-limited, BPSK systems.

The authors open their discussion with the development

of the signal as it can be represented at the input to the

demodulator with the end product being the same as that given

in equation (82). Following a rather brief description

of phase compensation, the standard error equation is conjured

with the form for the case of the transmitted phase, 0
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P (e) = f(Ml/ q6 (6) (113)M 0/

Solving (113) obviously is the logical progression from the

determination of the given conditional probability density

K function (hereafter denoted by q(6)) and, therefore, the meat

of the work done in this paper is an application of the

analysis of ( 16] to that determination.

Forsey, et al., find PM(e) through a four-step procedure

that begins by conditioning on R(t) and B(t) and drawing

the resultant pdf

'1 2

q r1)1F n+l;
q~eJR~t), (t)] = 1 ~ n=i n.(1~ ~ j~

cos[n(e - '(t)-gR(t)))(11

2 2[Rk=(] (115)

v

from elsewhere in the body of current knowledge. r() and

; deerintnare the gamma function and the confluent h er-

geometric function respectively and have been defined

previously. Step two consists of solving (113) for

q"6R(t),(t)--an action yielding a rather long and complex

result that, once again, has been taken from other literature.

The next step in the solution process is, obviously, the

- removal of the conditioning on R(t) and 8(t) which yields

2 7
P (e) ff)] eIR(t), 6(t)lqR(t), 6(t)] dB(t)dR(t).

0 0->(116)
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Since the probability density above is just the joint density

of the amplitude and phase of the signal that results when

narrowband Gaussian noise is added to a sinusoid of known

amplitude and phase--a very well-known pdf--then the final 1

step of the solution is to solve (116). The resulting error

expression is
['.2Y (. n 2 )  

r].. 
-.

M- ex (-1)n(n/2+l) 1
M- nr(n+l)(Via V)nJ

(117)

sin ( ( __-i) (n))

2 A 2  
(118) 4n 2 n  

, .n

F(n) = R(t)fn[R(t)1cos nIg[R(t)] -g(A)) exp 220n\_2o'/
(~ ~ v) I n R t )

;

F1( ;n+1;- av2 In (n) dR(t) (119)

where I () is as previously defined. It is stated that the

infinite series in (117) can be shown to be convergent. A

little consideration will reveal that this error expression

is, indeed, the generalized form of that presented in (161

for the hard-limited BPSK case.

Following the presentation of (117) the authors proceed

to verify their work through the use of an example utilizing

a TWTA model drawn from the literature. Although no numerical

verification was presented, it is shown that (117) is usable.

63

63

*- -, -. ° . -.

4, 
, -. - - . . . . . o,.4



'S A

After a discussion of the effects of TWT input backoff

on system performance, the work is concluded with the

assertation that system ISI can be taken into account using

the methods already described by Prabhu [6], [10] in

combination with basic enumeration.

The work presented in [18] is by far the most complete

treatment of the performance prediction problem as it

pertains to wideband nonlinear satellite communications

systems with significant uplink noise. Unfortunately, when

M > 4 it becomes a fairly complex task to evaluate the infinite

series that appears in the final error expression. In [19],

* authors Mathews and Aghvami have recognized this deficiency

and present an approach designed to skirt the complexity of

evaluation while retaining the accuracy for M-ary systems

where M >.4.

Following the usual signal development up to and including

- the input to the demodulator, the authors assume that the

" signal is coherently demodulated (with phase compensation E)

and sampled once every symbol duration yielding,

I = f(R) cos[B-g(R)+e] + vc (120) .

Q = f(R) sin[ -g(R)+e] + vs  (121)

as the inphase and quadrature components respectively.

*. Using very generalized reasoning, the basics of error

probability are given and the expressions for the error

probabilities of the binary and quarternary cases conditioned

on R and 8 are developed. After stating that it is not

possible to obtain a simple analytical expression for

PM(eIR, 6) for M > 4, the original contribution of [19] is

introduced.
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From the literature on the principles of communication,

Mathews and Aghvami draw general bounds on the BER. These

are valid for any type of signal corruption and can be

written

(Pl+P2 ) _PM (e)<PI+P2  (122)

Pl(e) = Pr [ -- <I<-; -c<Q < 0] (123)

(e)_ _ tan -<Q < ] (124)

For linear CPSK systems with noise as the only form of signal
Mcorruption, the in the lower bound is replaced by -- "

The authors propose that this is also true for nonlinear

systems thus making the upper bound, P1 + P2' a good estimate

of the true error probability. This estimate is used to

develop a generalized conditional error probability,

Qo os 2"-IoSin(2"
PM(eIRo) 1- r -erf .0 c

(125)V

where I o and Q are I and Q without the vc and vs terms

respectively. By averaging over all possible values of R

and 6, the system error probability is obtained. This last

step is relatively uncomplicated and straightforward as the

joint pdf of the amplitude and phase of a known sinusoid

corrupted by a narrowband Gaussian noise process [q(R,3)] is

well known.

Various and sundry mathematical manipulations lead to

the final form of the BER expression that the authors choose

to use--albeit a rather arbitrarily chosen one. Picking
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expressions for f(.) and g(.) that are used in other works,

- ,"Mathews and Agvami proceed to compute PM(e)'s for M = 2, 4,

8, and 16 and present the graphs for the latter two. For

the binary and quaternary cases, it is found that the results

computed are in exact agreement with those from [18]. When

the signal is octernary or duo-octernary and the proposed

bound is applied using both uplink and downlink Eb/No's,

the results are seen to be "good" approximations--less than

10% deviation from the true PM(e)'s. The authors conclude

that their method is acceptably accurate, much simpler than

the calculation of the exact BER, and therefore, much better

- than the analytical approaches whose culmination is in the

work of Forsey and associates.

The most recent analytical approach to a wideband non-

'-x linear system with significant uplink noise is described by

Yao and Milstein in a 1982 paper [20]. Contending that the

final test statistic cannot be adequately approximated as

the sum of 2BT independent samples, nor by a majority logic

detector utilizing the sgn(.) function, nor by a single

sample, as all of the previously examined work has done, the

authors use the moments of the system's output to predict

system BER performance. With the same general approach used

as that found in the work of Milstein and Davidson [14], a

* numerical procedure based upon the use of moment space bounds

and introduced in earlier work by these authors is presented.

Following common lines of system and signal development,

the average error probability of the system is seen to be

PM(e) = E [Q -(i2l 2 (126)

a2  N 2 (127)
2 v
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where . is a sample of the demodulated input to the final

integrate and dump detector due to the signal component of

the received waveform. Utilizing the moment space bounding

technique and more specifically, the isomorphism theorem,

two moments bounding the error probability are selected.

Through a process not well understood by this researcher,

* a group of generalized equations are developed that will,

with the numerical determination of two sequences of constants,

* be applicable to systems with arbitrary nonlinearities.

Yao and Milstein proceed to present numerical results

for the case of an ideal hard-limiter as the system non-

linearity for various values of uplink and downlink Eb/No.

V..

3.1.3 Nonlinear Systems with Uplink

Noise and ISI

The last of the analytical methods to be discussed are

those that are used on more-or-less realistic systems. That

is to say, those approaches that have been applied to the

basic PSK system as described at the beginning of this

chapter. Unfortunately, the quantity of work within this

classification is quite small comprising only four papers--

three of which were jointly authored by N. Ekanayake and

D. P. Taylor.

In their earliest work [27] (the first to be written,

although not the first to be published), Ekanayake and Taylor

present what is, essentially, just an extension of the work

of Jain and Blachman [16] to M-ary systems with ISI. Like

Jain and Blachman, the authors assume that the transponder

nonlinearity is an ideal hard-limiter. Additionally, all of

* the ISI is assumed to arise at the transmit filter while the

receive filter is wideband and introduces no signal corruption.
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S-" Following the standard signal development up to the

* .- transponder input, the authors define an "effective" pulse

shape using the quadrature signal components such that

s(t-kTs) cos v(t-kT + i i& S)Pk C k k~os k + +k

(128)

s(t-kTs ) sin v(t-kT ik + n

(129)

This gives the satellite input the form

Xp z s coS(Wot + V (130)

*- " which leads to the transponder output being a cosinusoid of

frequency w0 , phase vk' and an amplitude of unity. In the

receiver, the signal is coherently demodulated and sampled

as in (18] yielding inphase and quadrature signal components

that are written as

i = cos vk + vc (131)

0= sin V k + vs

for any k-th time period. It is quite easy to see that the

determination of the probabilistic character of vk has become

"O the focus of the authors' work.
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The derivation of the error probability as it proceeds

is fairly straightforward. From equations (131) and (132),

the expression for the probability of a correct decision

[QM(e)] is written where, of course, PM(e) = l-QM(e).

QM(e) is taken as an expectation over v and, after some

algebraic manipulations, is found to be very similar in form

to that given in [16]. In fact, for BPSK with no ISI, the

expression Q2 (e) is seen to be identical to that derived by

Jain and Blachman. At this point, the only unknown is the

pdf of v

Since the next logical step is the calculation of q(,),

* that is what Ekanayake and Taylor proceeded to do. Using

* techniques and solutions previously introduced by Shimbo,

* et al., in (121, an expression for q(v) is given and the

moments required for the calculation of the BER are presented.

Following these steps, the manipulations required to achieve

a relatively simplified expression for PM(e) are performed.

The paper is concluded with several numerical examples

utilizing the transmit filter used in [121 and a single

sample per symbol receiver. Various graphs are presented for

BPSK and QPSK systems with different BTs products. Additionally,

each graph shows the BER for the case when no ISI is present.

For large values of the effective uplink Eb/No (> 10dB) it

is noted that the calculation of PM(e) becomes quite tedious

and an asymptotic approximation is given so that computational

time may be reduced.

A final note must be made about the work just descirbed:

For M > 2, the authors made a mistake in the derivation of

* q('). This matter is acknowledged and corrected in an errata

announcement published in the "IEEE Transactions on Information

Theory," vol. IT-27, no. 1, 1/81, pp 137-138. Although the

correction introduces Hermitian functions not found in the

original work, the basic premises are found to be quite sound.
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In their work immediately following that presented in

[27], Ekanayake and Taylor present a method of predicting

system performance that is a step backward as far as accuracy

is concerned. Recognizing the computational complexity of

the method presented previously--one that requires both an

exact knowledge of the transmit filter impulse response and

the evaluation of an infinite series--the authors present

simple upper and lower bounds on the BER of a BPSK system

with ISI and a hard-limiting transponder. Since the hard-

limiter is assumed to be ideal and with the presumption that

no ISI arises in the receive filter, these bounds are very

*+ easy to apply requiring knowledge only of the peak value and

variance (a 2) of the intersymbol interference. Estimates of

these two quantities are generally easy to find and, in fact,

can be taken from some of the curves developed in [16].

The development of the signal is pursued in much the

same manner as has been seen previously. One of the differences

is that the ISI is assumed to be finite and to exist between

the limits of +I and -I wi-ere Im is the maximum possible

amplitude of ISI caused by the N pulses preceding and following

the given pulse. Another is that the uplink noise and the

downlink noise are both given the general form

n(t) = nc (t) cos(Wot+ k)-ns(t) sin(wot+ k) (133)

thus causing the combined phase at the transponder input to

be written as

Sn IX k(t) = arctan - - (134)
L ik cj

O Since the limiter is assumed to be bandpass and ideal, the

output is just a cosinusoid with phase (k + k ) " The signal
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is subsequently corrupted by downlink noise and then coherently

demodulated and sampled at the receiver.

With y defined as the numerator of (134) and x as the

denominator, the average probability of error is written

P2 (e) = Ex[ erfc(cos Xk / 2 a)] (135)2 x,yk

and evaluated by integrating over all possible values of the

ISI with respect to its distribution function at the sampling

instant. A little thought leads one to the fact that the

evaluation of (135) is accomplished quite easily in the absence

of ISI and is therefore wholly dependent on the unknown

distribution of the ISI. If the ISI is identified by x,

and the error probability without ISI effects is denoted by

Pg(Pk+a), then some reflection on the nature of (135) leads

to the bounds

M 1
1 [Pg(Pk+Im) + Pg(Pk-Im)] Pg(Pk )1 Y + P g(Pk )

(136)

P2 (e) _ [Pg(Pk+ml) + Pg(Pk-ml)]

where mI is the first absolute moment of the ISI. Since m I

itself is very hard to specify, the bounds introduced for it

in [81 are used. Using curves developed in (16], (136) can

be computed and is for a 4th order Che',vshev filter by way

of example.

The authors conclude that the bounds presented are

. acceptably tight so long as (Eb/No)u is greater than

(Eb/No)d. In general, it is noted that the lower bound is

tighter than the upper. Further, the divergence that does

occur when downlink Eb/NO exceeds that of the uplink is seen

to approach a constant value with increasing (Eb/No)d.
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In the two papers just described, Ekanayake and Taylor

present two ways to predict a satellite communications

system's BER performance. The first allows an exact solution

whereas the second is a presentation of acceptable bounds

designed to sidestep the computational complexity of the

exact solution. In [29], the authors present the third paper

on their work in this field. There are-no new approaches,

however, as the reader is merely given a rehash of work that

- - has already been discussed in (28]. In fact, (291 is just

an explication and justification of the work presented in

the authors' previous paper and, as such, need not be further

explained.

3.2 Monte Carlo-Based Simulations

True Monte Carlo (MC) simulation, although the most
accurate predictor of a communications system's performance,

calls for an unacceptably large amount of computational time

and effort to produce reliable estimates of the BER. There-

fore, the technique is not used in its pure form. It is,

nonetheless, important to understand the ideas and procedures

underlying MC simulation as a great deal of the work on

* satellite communications system performance prediction is

based upon these very same concepts.

The estimation of the probability of error for an M-ary

version of the system shown in Figure 1 utilizing pure MC

*O techniques proceeds as follows: First, one generates

sequences of sampled values of D(t), n(t), and v(t) using

random number generators thus allowing the use of deterministic

models of the various system components -and elements. The

* sequence {Dk} passes through the transmit filter becoming

{S i } such that

720:
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S= ht(Dk, Dkl..., Dkjl) (137)

where one can easily see that the system is assumed to have

a memory length of J representing the ISI on the uplink.

J is selected so that the vast majority of each pulses's

energy is accounted for. Following the by now familiar

progression of the signal through the system, one arrives

at the input to the receive filter {U i. The k-th output

of this filter is expressed as

Yk = hr (Uk' Ukl''''' UkR-) (138)

where R fulfills the same function for the downlink as J

does for the uplink. R and J may be, but are not necessarily,

the same.

At this point, tYi} is sampled at the system bit rate

and compared to the decision threshold or thresholds to

determine the output bit. The system error counts are obtained

by comparing the output of the receiver, {bi}, with the known

input bit sequence {bk}. In order to estimate the error

probability by this direct counting method, the number of

samples required, N, is given by

N> 1 (139)

I2
t-..~ PM (e) ."

where e is the normalized error of the estimated PM(e). That

* is,

standard deviation of PM(e)= (140) "
PM(e)
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It is quite easy to see that the minimum number of bits

required for accuracy, N = lO/PM(e), yields a normalized

error of e = .32 -- an error that may be too high in many

cases thus requiring even larger sample sizes. The uselessness

of pure Monte Carlo simulation is obvious.

In light of this problem, the objective of all of the

simulation-based performance prediction tools is to drastically

reduce the sample size requirement without losing any of the

flexibility inherent in Monte Carlo simulations. The pursuit

of this goal has resulted in the appearance of, roughly, three

categories into which the vast majority of simulation tools

may be classified. For the following descriptions, these

categories shall be known as 1) the Combinatory/Short Sequence

-: or Semi-Analytical approach, 2) the Tail Probability/Extreme-

Value Theory approaches, and 3) the Modified Monte Carlo or

Importance Sampling approach.

3.2.1 The Semi-Analytical Approach

In the design of a simulation-based performance prediction

tool, the foremost goal is the reduction of the required

sample size. What makes this goal difficult to realize is

the concurrent requirement that the accuracy and flexibility0
of a true Monte Carlo simulation be retained. The primary

* cause of the large sample size requirement is the necessity

of modeling the uplink and downlink noise using sampled random

processes the elimination of which, therefore, would seem to

be the answer to the problem. Any analytical representation

of noise will, of course, cut down on the flexibility of the

tool; however, most noise that is actually encountered can

be represented by one of several well known analytical noise

models thereby bypassing this objection. Since the downlink

74

'S

:V
. ,... ~1



noise encounters only linear system elements there is no

problem in using an analytical model for its representation.

The uplink noise must pass through a nonlinear transponder

however, and one thereby encounters trade-offs in simulation

time and accuracy when an analytical treatment is to be

utilized. Replacing the random process representations of

the uplink and downlink noise with some form of analytical

modeling and/or treatment while attempting to retain the

flexibility and accuracy of MC simulation yields what may be

designated as the semi-analytical method.

Although several slightly different approaches were

reviewed, all were essentially the same and the representative

papers on the subject [31]-[36] may all be treated and described

as one approach. That approach is to completely remove all

random processes from within the framework of the simulation.

The input sequence is handled by using several short sequences

where the system BER becomes the average of the BERs calculated

for each sequence so that the ISI effects are still accounted

for. In each of the performance prediction tools described

in [311-[361 all of the noise in the system is presumed to

arise on the downlink. Some use the rationale that since the

uplink S/N is typically much larger than that of the downlink

then the effect the uplink noise has on the probability of

error is so slight as to be insignificant and can be safely

ignored. Others assume that the uplink noise may be significant

and compute an "equivalent" downlink noise power using some

simple algorithm in a manner vaguely similar to the work of

Jain and Blachman (16] or Lyons (15]. In short, the semi-

analytical method is comprised of the retention of the "building

block" analytical models of Monte Carlo simulation, the use

of several short sequences as input to replace that random or

partially random signal, and the analytical treatment of the

thermal noise as if it were all downlink and thus easily handled

in a deterministic manner..
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3.2.2 The Extreme-Value Theory/Tail

Probability Approaches

The preceding section described the commonly used

approach to the prediction of a communications system's

performance that entails the alteration of a system's

simulation model ,so that the nonlinear transformation of the

uplink noise can be handled without resorting to a true

Monte Carlo simulation. An alternative or some alternatives

to that approach is to assume that a limited amount of Monte

Carlo data is to be taken and to use these data to predict

the system's BER. Two such alternatives encompass the

application of the theory of the asymptotic distributions

of extreme values (37]-[42].

Of the two alternatives mentioned above, the earliest

to be proposed was the direct and generalized application

of the statistical theory of extreme values to communications

system performance prediction [371-[391, [42]. Suggested

for and described in the context of a binary system where

one is making just one threshold-crossing decision, it is

- applicable to more complex systems with a corresponding

increase in complexity. With the primary assumption that
- -kthe output and/or degradation of the system output can be

represented as a random process possessing a distribution

e. function of exponential type on the right, the application of

* . extreme-value theory is described in the next few paragraphs.

Let one assume for explicative reasons that the transmitted

symbol (or symbols) is (are) 0. Further, let {Xi} n represent

a sequence of n independent samples drawn from the distribution

Fx(x) of the output. If the random variable Z is defined as

Z = maximum (Xl, X2 ,... Xn ) (141)
nP-
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then the distribution function Fz(z) is said to take the

asymptotic form

nI.

lir Fz(z) = lir FXn(z) = exp(-exp[-a(z-u)]). (142)
n - n

this lends itself to a linearization yielding

-ln(-in[Fz(z)]) = a(z-u). (143)

a and u in the prevl*.ous two equations are unknown parameters

of the asymptotic distribution that must be estimated from

the Monte Carlo data that is presumed to exist. Since the

quantity -ln(-ln[Fz(z)]), and therefore, the error probability

for a given value of z, is now linear in z we can use this

theory to estimate a system's BER performance.

Extreme-value theory performance prediction begins by

dividing the Monte Carlo data into N groups of m samples.

Although there are no optimum procedures specifying the

selection of N and m, the theory's requirements call for m

to be large enough that the extreme samples have the asymptotic

distribution of (143) and for N to be large enough that the

extrema from each group of m samples can be used to acquire

unbiased estimates of the parameters a and u. Following the

division of the data, the estimates of a and u (a' and u')

are determined as follows:

1. Select the largest sample from each of the N
groups X(l), x(2),...x(N) and order them so that
x (1 ) > x(2) > x(3) ...

2. Estimate the value of FZ(Xk) as

[" F .(xk )  _N+I-k -
F(N k-- 1, 2,...N (144)

Z k N+
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3. Letting Yk =-ln(-ln[Fi(xk)1), plot a "best"s linear
fit to the data (xk,yk) and draw the estimates for
a and u from the resulting coefficients.

At this point one may obtain the estimated value of the

* distribution at the decision threshold level T as

Fj (T) =exp (-exp(-a' (T-u')]) (145)

A diagram of this is shown in Figure 8. Now we know that

m
F z(T) F Fx(T)

=(1-P (e)]m (146)

mp 1- 2(e)

.Y. and the estimate for the probability of error is therefore

P~() = 1 -F5(T)

Pe)m (147)

an estimate which, furthermore, is consistent and asymptoti-

cally unbiased.

Study and analysis of the accuracy and of the effectiveness

of this method are given, usually assuming a maximum-

likelihood receiver. The accuracy is deemed quite acceptable

and the effectiveness, that is, the sample size reduction

factor from that required for a true Monte Carlo simulation,
-5

is shown to be 8 for an error rate of 10 with a confidence

Slevel of 90% and a minimum resolution of less than one order

of magnitude. This factor is, of course, expected to be much

larger for higher BER's and/or confidence levels.
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* Figure 8 -Extreme-Value Theory Sample Diagram
(for N=4)
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Following the basic presentation of this given in [37],

[38] and [391 present generalizations of the theory of extreme

value distributions in what are essentially efforts to prove

the validity of the application presented by Posner while

pointing out some of the mistakes and misinterpretations

commonly made. It is noted that the main problem encountered

* -. is that the convergent sequence in (142) is frequently assumed

to apply when, in fact, there is no convergence. This, of

course, leads to inaccurate and bad estimation of system

error probabilities. Letting w = a(z-u) and assuming the

existence of some sequence {dk}, Weinstein [38] rewrites

equation (142) as

lim Fz(z) = lim Vn zV +
n n co

(148)

- exp [-exp (-w)]

where V(-) is probability distribution and v > 0. With the

introduction of this form, he proceeds to define the necessary

and sufficient conditions for the convergence of (148). v has

been introduced primarily as a generalizing factor in the

* equation that more adequately shows the true nature of the

convergence to the extreme-value asymptote. He proceeds to

show how (148) leads to a more consistent and accurate BER

estimator. In [39], Jeruchim elucidates the applications

* of this generalized estimator and its potential pitfalls.

The second alternative to be based upon the theory of

the asymptotic distribution of extreme values is presented

by Weinstein and follows, albeit sc.iewhat indirectly, from

* the generalization he presented in [38]. Noting that in some

cases substantial inaccuracies are inherent in the use of an
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asymptotic distribution instead of the actual extreme-value

distribution, he derives a BER estimator that is very

specifically directed towards communications systems.

Weinstein begins with the assumption that there is a

general class of probability distributions that most communi-

cations system degradation may be described by. With the

requirement that this class of distributions be linearized

by a known transformation into a simple function of the

argument, he describes these distributions by the probability

density function

q (x) a exp(-(x/) a] (149)
a,(j ar(l/a)

where P(.) is the Gamma function. The random variablea

described by (149) are called the higher exponential class

of random variables.

Considering, once again, a binary system, the probability

of error can be written as

P2 (e) = f q (x) dx (150)
T '

where T is the threshold and a 0 is presumed to have been

transmitted. The well known asymptotic expansion of this

equation leads to

P2 (e) exp(-T ) T >> 1. (151)

which is, of course, linearized by a double logarithmic

* transformation to the form

ln(-ln[P 2 (ei0)]) a ln(T). (152)
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-aking this linearization, Weinstein uses an extrapolation

technique similar to that described earlier in this section

to acquire an estimate of the error probability. The

procedure is as follows:

1. Select three extrapolation thresholds, xl, x2 , and
x3 such that a small portion of N Monte Carlo data
observations exceeds x3 . The three thresholds
should be selected to be uniformly spaced in
logarithmic scale.

2. Calculate the estimated probability of error,
P (eIxk), for each of the thresholds as

Pi(elxk) N (153)

where nk is the number of observations that
exceed xk .

3. Plot a "best" linear fit to the data [xk, P2(eixk)]
and draw the estimate of a from the coefficients.

4. At this point the estimated probability of error
for the threshold T can be found from

P'(eIT) = exp(-T a'). (154)

Examinations of this estimator have shown that with

proper selection of x I , x2, and x3, it is acceptably accurate,

:onsistent and relatively unbiased. There are no procedures
-  for the selection of the optimum values of the xk, and they

are usually chosen as a compromise between an excessive

sampling variance when they are too large and an unacceptable

amount of estimation bias when they are too small.

The sample size reduction factor for this "tail probability"

approach is shown to be roughly 3.8 when a = 1, 18 when

a = 2, and 54 when a = 3. In the binary system case, an

additional factor of 2 applies for all values of a. These

*-[ numbers are derived for a probability of error of 106
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3.2.3 The Importance Sampling Approach

The last of the three simulation approaches is what is

known as the importance sampling or modified Monte Carlo

approach [431-[46]. Like the extreme-value theory approaches,

importance sampling, as applied to performance prediction,

is based upon true Monte Carlo simulation methods. That is,

the communications system BER is estimated from a set of

Monte Carlo observations rather than using the analytical

techniques described in Section 3.2.1.

Importance sampling is applied to the same basic system

that has been discussed throughout this chapter and in the

preceding chapters. The formulation of the problem, however,

can be stated in a somewhat different manner. To begin,

one assumes that the input-output relationship of the communi-

cations system in question is known. In addition, the

statistics of the inputs to the system are assumed to be

known.

Our desire is to use this knowledge to estimate the

probability density function of the output from which we can

derive an estimate of PM(e). If the system is once again

assumed to be binary, then the error estimate can again be

written as

P'(e) = f f (y) dy (155)

where K is the decision threshold and f' is the estimatedk
pdf of the output sequence {YkI . It has already been presumed

that the error estimate will come from a group of N Monte

Carlo observations. This means that

P'(e) = nj/N (156)
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where n. is the number of the output observations that exceed

. The number of output samples required to estimate the

error probability via Monte Carlo simulation is, however,

known to be given by

N > l/ 2PM(e) (157)

with E being the normalized error of the estimate P2 (e)

(for e = 1i//0 this yields N > 10/PM(e) mentioned earlier).

Since (157) requires that N be unacceptably large for an

acceptably small e given typical communications systems error

probabilities, the problem becomes one of estimating f' to

minimize E for a reasonable and acceptable number N of

observations of the system output.

In the application of importance sampling to the problem

stated above, the principle is to reduce the sample size

requirement by modifying the statistical properties of the

systems input sequence. This causes a significantly higher

than normal number of errors to occur in the course of the

Monte Carlo simulation. This modification must be compensated,

of course, by weighting the error estimation of the true BER.

The quantity that equation (155) is estimating is written:. *'

P2 (e) = J fy (y) dy. (158)

2i f (y

It can be rewritten as

P = f d(y) fy (y) dy (159)

O where we have defined d(y) = 1 if y exceeds the threshold

. and 0 otherwise. In importance sampling, a modified pdf
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f*y(y) is introduced that is superior for sampling purposes.

Equation (159) can therefore be rewritten

;dfY (y )

P2 (e) =d(y) (y) f*y(y) dy_ f*y()d

(160)

= *(y) f *y (y) dy.

The modified output pdf is derived by biasing the pdf of the

input and (156) now becomes

~ ~ N
P N = d*(yi) (161)

with yi the i-th element of the output sequence {Yk1 that

is produced by using the biased input sequence.

In the implementation of the modified Monte Carlo

technique one follows essentially the same procedures as in

true Monte Carlo simulation. There are, however, some rather

obvious differences. From (160) it is seen that the output

samples will have a bias that is given by the ratio f*y(y)/

fy(y). It is therefore obvious that the input samples will

have a probability bias B(x) which is the ratio f*x(X)/fx(X).

The weight that must be given to the effect of the sample,

W(x) is, therefore, the inverse of the bias. Since { } is

determined from (Xk}, the probability that the i-th sample

of Y - yi is also assumed to have the bias B(xi ) and thus

the weight W(x) . The probability estimate determined using

equation (156) must therefore be weighted by the average of
the weights of all of the n. samples that are observed to exceed

the threshold [as shown by equation (161)]. In other words,
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Wavj = Z W(x..). (162)
-" nj i=

If one now assumes that there exist N observations of

the output of a system having an input whose pdf has been

biased by B(x), then equations (156) and (161) yield an

estimate of the probability of error as Z

P'(e) = Wavj n/N

S- E W(x ij) (163)

which can be shown to be an unbiased estimator; The advantage

of using this modified estimator is that for a particular

sample size the variance from equation (163) will be smaller

than that from (156) if B(x) is chosen to be >1 for every

value of x c I = {xly - g(x)e[y > el}. This variance

reduction may be computed as follows.

The variance of the estimator of equation (156) is given

by

P' P(e) 1-P' (e)l
c = N

C Nc

,P (e)/IN (164)

fx x dx.

c

where Nc is, of course, the number of observations taken for

the application of the Monte Carlo estimator with our unbiased

input. The variance of the modified estimator of (163) is

given by
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2  L fI W(x) fx(X) dx (165)

is

where W(x) is as previously defined and Ni is the sample
is

size from a simulation with a biased input. For the case of

Nis = Nc , the variance reduction factor becomes

2 . W(x) fx(X) dx
Sis (166)

fI. fxW dx

": Alternately, if it is assumed that the normalized error as

given by (157), rather than the sample size, is held constant,

i.e., ec = eis' then the sample size reduction factor is

given by

V... r = N cNis

(167)

2

ais
2*

'a.-

From the previous paragraph it may easily be seen that

i .. a system's BER may be estimated very accurately from a small

group of observations provided that the input pdf has been

. biased such that those portions of the output pdf from which
errors are drawn are very heavily biased [B(x) >> 1].

Unfortunately, causing some portions of the output pdf to be

heavily emphasized causes the rest to be heavily de-emphasized.

This means that we cannot accurately estimate the probabilities
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*, of error that are drawn from the de-emphasized portions of

the output pdf; however, we are uninterested in those
probabilities, and thus this is not a problem.

A modified Monte Carlo technique utilizing importance

sampling has now been described. The implementation can,

however, be a very complicated matter. In a complex system

one does not necessarily know beforehand what regions of the

input pdf must be biased to produce the desired bias of the

output pdf. Fortunately, in most communications systems the

causes of performance degradation frequently have Gaussian

probability density functions. Therefore, one need only

bias the tails of the input pdf's to emphasize the desired

portions of the output pdf's. Methods of doing this and the

* j derivations of an optimum biasing function are given in

"" [43]-[461.

*In addition to the application of importance sampling

that is mentioned above, (43]-[46] describe the extension

of the technique to the case of M independent system inputs.

This is shown to be rather simple and very straightforward.

Experimental results on the application of this modified

Monte Carlo technique verify its usefulness as a performance

prediction tool. In a system having no ISI, the sample size

reduction factor varies from 45 - 25,500 depending upon the

.. desired probability of error to be estimated. With ISI

extending across five symbols, the reduction factor is shown

to be on the order of 7 - 1000. Overall, the modified Monte

Carlo approach is shown to meet the previously stated
0 requirements with its advantage over true Monte Carlo simulation

increasing as the desired estimation error or estimated

P (e) are decreased.
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4.0 PROPOSAL AND EXAMINATION OF A PERFORMANCE

PREDICTION TOOL

In the previous chapter, many different ways to predict

the performance of a satellite communications system were

examined. These approaches were divided into two main

categories--the analytical methods and the simulation-based
methods--and comprise a very large number of assumptions,

mathematical tricks and techniques, and unique ways of

looking at the "typical" system. Each of these tools were

examined to see if they satisfied the requirements for a

performance prediction tool as stated in Chapters 1 & 2.

Some of them failed because they did not address the effect

of a nonlinearity on a system's performance. Others ignored

the bandlimiting character of most real systems or else

assumed that there was no noise added prior to the nonlinearity.

Many of the approaches looked at in Chapter 3 sacrificed

flexibility for accuracy (and vice versa) while still others

* were so computationally complex as to be unfeasible. Most

failed to meet the requirements for combinations of these

* reasons.

In the last two chapters the advantages of the simulation

based approaches over the analytical approaches have been

stated time and again. Although this may not be true for
Iall possible simulation-based or analytical methods, it is

true in general with regards to the research that has been

.. conducted to date. Therefore, all further discussions shall

center entirely upon the simulation-based category of performance

predictors.

Of the three subcategories comprising the simulation-

based performance prediction tools, each has its advantages

and disadvantages, yet none of the particular methods described
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in the previous chapter has all of the desired properties
. of the ideal prediction tool. The semi-analytical approach

is what most people use presently and thus it offers little

or no room for improvement. Extreme-value theory is, however,

very interesting as is the importance sampling approach.

These latter two techniques offer sample size reduction

factors ranging from 3.8 up to many thousands while retaining

most of the advantages of true Monte Carlo simulation. In

fact, the only significant drawbacks these methods have are

that they still don't reduce the sample size enough for a

- given estimation variance. All in all, these methods would

seem to merit further examination.

4.1 The Proposal

As a review, let us state briefly the basic mechanisms

by which Weinstein and then Shanmugam and Balaban achieve

their sample size reductions. Weinstein's method is one of

"graphic extrapolation" wherein direct counting of errors is

used to determine three, manageably large BER's for three,

evenly spaced error thresholds xi that are smaller than the

threshold of interest xK. The selection of the xi's is

governed by a trade-off between the sample size required to

accurately estimate the BER at the largest xi , x3, and the

desire to have x3 as close as possible to xK so as to reduce

the variance of the estimator. This trade-off is sample-

size limited to the selection of an x3 that yields a PM(e)

in the range of 10 to 10- 5 . On the other hand, the Modified

Monte-Carlo method proposed by Shanmugam and Balaban is not

strictly sample-size limited at all. Their method requires

*that one have a prior knowledge of the statistical character

of the uplink noise especially with regards to that portion
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I of the uplink noise pdf that directly influences the number

of errors to be seen for a given threshold. A little thought

will indicate that a reasonably good idea of the statistical

nature of the output signal is also a necessity. With the

required statistical knowledge in hand, one biases the pdf

of the uplink noise so that more errors occur for a given

threshold, counts the errors for a time sufficiently long to

yield an accurate and precise estimate and then removes from

this estimate the bias that was introduced to the uplink noise.

The sample size is again limited to that needed to determine

a BER in the range of 10-4 to 10-5 yet the determining factor

in the variance of the estimator is more the accuracy of the

biasing applied to the uplink noise statistics than in how

much smaller the estimated BER is from the counted PM(e)

used in the estimation.

With the mechanisms of these two methods in mind, it is

time to directly address the driving force behind this study:

The discovery and/or development of a performance prediction

tool for satellite communications systems that more closely

approximates the "ideal" performance prediction tool described

in the first chapter than do the analytical and simulation-

based predictors in use at present. Each of the methods

that have been examined has been shown to have significant

drawbacks. With the exceptions of Weinstein's method and the

Rimportance sampling approach of Shanmugam and Balaban, each
of the performance prediction tools examined has been shown

IN ,to be unacceptable for one reason or another. To be thorough,

in fact, not even the two exceptions are without their

problems. In short, something different needs to be examined

and, hopefully, developed to fruition.

A different, although not entirely new approach to the

performance prediction tool problem will be offered at this

time. When one considers the two approaches that were
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previously identified as being the best of those that are

now available for use, it is easy to see that they are rather

complimentary in nature. That is, Shanmugam and Balaban's

method alters the statistics of the uplink noise in such a

way that either the number of samples that need to be looked

I at to estimate a given BER, or the variance of an estimate
of that BER, are reduced from pure Monte Carlo requirements

whereas Weinstein's extrapolation method merely lowers the

" number of errors that need to be counted to estimate that

given BER. It should be a fairly straightforward task to

take the two methods and meld them into a new tool that is

based upon the latter and uses the former to reduce either

the sample size requirement or the variance of the estimator.

In short, this proposal is to combine the two best approaches

into one with the hope of counteracting the disadvantages of

each while enhancing the advantages.

The specifics of the proposed approach, hereafter to be

known as the Modified Extrapolation Approach, are really

quite simple and are as follows:

. 1. One begins by determining the expected order of
magnitude of PM(e).

a-

2. Define a maximum number of samples, Nme, that are
*O to be taken for error counting purposes. This

will be of the available computational time as well
. as the minimum number of errors that must be counted

to yield a reasonable estimate of PM(eIK) where
K is the decision threshold (to keep the variance
small, it is desirable to handle as close to the
same number of samples as required by Monte Carlo
estimation).

3. Knowing Nme, the largest of the Weinstein extrapolation
thresholds, x3me, can be specified. This will
depend on whether the modified Monte Carlo method

jis to be applied to further reduce the sample size
or to lower the estimation variance.
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4. From x3me determine the other two extrapolation
thresholds.

-5. Apply the bias to the input noise pdf and start
counting errors.

4.2 Evaluation of the Proposal

The first order of business in evaluating the proposal

of section 4.1 is the determination of criteria by which

performance is to be judged. Since the implementation of

the Modified Extrapolation approach can be broken down into

the separate implementations of its two component approaches,

it may reasonably be assumed that the selections of the

extrapolation thresholds, the bias, B(x), etc., can be based

on the criteria presented by Weinstein or Shanmugam and

Balaban without having any adverse effect on the performance.

It has already been established that performance prediction

tools are judged on the basis of accuracy, flexibility, and

speed of execution. By the nature of the two approaches that

are being combined it is easily seen that Modified Extrapolation

is as flexible as anything that now exibts short of the pure

Monte Carl6 technique. We are, therefore, left to consider

the accuracy (variance) of the estimate and the speed with

which that estimate is made (or, stated another way, the

sample size reduction that is achieved).

A little thought will suffice to convince one that neither

an analysis of the variance (or variance reduction) or the

. sample size reduction will be independent of the other. In

order to study the effect that the proposed Modified Extra-

polation method has on the variance of the estimate relative

to either or both of its component methods, the sample sizes

must be the same, and vice versa. In other words, testing
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one is effectively the same as testing the other given that

an equal importance is placed on the two. This assumption

has been and will continue to be made. Since the previous

discussions in this paper have tended to center on the sample

*' size requirement instead of the variance, the following

evaluation of the Modified Extrapolation technique will do

the-same. In other words, the evaluation will consist of

comparing the sample size requirements of Weinstein's,

Shanmugam and Balaban's, and the Modified Extrapolation

techniques for a given variance and probability of error.

For clarity's sake, the pure Monte Carlo methods will also

be included in the comparison.

". Parameters and constants used in the analysis that is to

'- follow have been selected on the basis of consistency with

those selected and derived by the authors of the methods to

which they apply. The desired threshold, K, was chosen to

yield a PM(e) = 10- 6 . For the constant variance, it was

decided that the selection of a normalized error (see equations

(139) and (140)] of 0.1 was reasonable as well as computationally

convenient. The bias applied to the uplink noise pdf is

B(x) = c/Ifn(x)1 (168)

* •*where c is a constant such that

c = (-a)/(2)7)0 (169)

a.°

* From Shanmugam and Balaban, values for x and c have been chosen.

The analysis itself will consist of two parts. To

begin, expressions for the variances of each of the estimators

will be either given or derived to an extent that should

*• provide sufficient justification. The second part will be

the actual specification of thresholds, constants, etc.,
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followed by the calculation of the sample size requirement

of each estimator for the prescribed conditions.

i.-

- 4.2.1 Variance Calculations

A BER estimator variance analysis must, of course,

begin with the derivation of the variance of a pure Monte

Carlo estimator. Assuming that the estimator is to be

applied to a binary system, as has been done throughout

-i this study, then the threshold test on each received bit is

.7 an obvious Bernouli trial. To illustrate the usefulness of

this fact, assume that the data to be transmitted are all

O's. Let the output of the decision logic be Y = yj a random

variable with a binomial distribution. The expected value

and the variance of Y are then known to be

E[Y] = Pi1  np (170)

E[Y 2] - E[Y]2 a 2 np(l-p) (171)

where n is the number of bits transmitted and p is the bit
" probability of error. when p is to be estimated using the

error counting technique with Nc samples being examined,

then the estimator of p, p', is

N c
1 N y. i "(172)

c i=l1
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The mean of this estimator is

E c
E[p'] = E y.

I i=l1i

E-.]." 
(173)

= RE(Y]

C

*. 4

and the variance is thus

= E[P2] E [P-2

-E[] - Ej N

I4 .4*'

.4... (174)
- -[y2] [y]2)

I N
Nc

Since the probabilities of error being dealt with are

PM(e) << 1, the variance may be approximated as

a 2 Z (175)
c IN
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The variance of the modified Monte Carlo estimator

of Shanmugam and Balaban is quite easily approximated by the

integral
W(x)f (x)dx

is Nis

et 1
where W(x) = x is the weighting function for the output

and fx(x) is the unbiased pdf of the input noise. Unfor-

tunately, as personal experience and conversations with

K. S. Shanmugam bear out, this expression is not analytically

tractable in general. Shanmugam and Balaban, however, have

generated sufficient data to make a plot of sample size

reduction factor, r, versus PM(e) which is reproduced here

as Figure 9. Since the determination of r requires a fixed

normalized error, e, it is possible to determine an empirical

expression for the importance sampling variance.

The procedure taken to find Or 2 , the variance of the

sample size reduction factor, is essentially just that needed

to determine the equation of the line on the plot shown in

~ Figure 9. Both axes are seen to be on a logarithmic scale

so that the equation of the line is log y = m log x + b.

The solution proceeds as follows. It is' known that

a 2 a2  PM(e)
is c Nc

N
-c

y= r N.-.
Nis

x = PM(e)

' and

Nc =
e PM (e)
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- At this point, the expression for the importance sampling

variance may be "derived" via the step shown below.

log r = m log PM(e) + b

r = ( 1 0 b) [PM(e) ]m

* - N
c

N N ris

Nc = rNis
r2 (177)

= Nis(10b) [PM(e)]m

2 PM(e)

ais N

(PM(e)] 1 -m

10 bNis.

From Figure 7, m is found to be -0.6. Selecting the point

on the line where r = 400 and PM(e) = 106, b is found to

be -1.0 and the variance is thereby written

[PM (e) ] 1.6

2=10 [Mel(178).is N.

Variance expressions for two of the four performance

predictors being compared in this analysis have been determined.

The third method to be looked at is Weinstein's tail probabili-

ties approach (401. To begin the derivation, recall the

three-threshold case and procedures described in the previous

chapter. Note that YK - In(-1n[PM(elK)]) where K is the
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* - threshold for which it is desired to estimate the BER.

* ~From Weinstein's paper we kcnow that the estimate of~'~ is

y - aly' + a~y + ay(19

~L ~ where

a lnK l -1.431lnx ln xi

a2

1ln K-ln x2a 2.097 (180)iN + C n in

The variance for the tail extrapolation method is easily

seen to be

vary) a aa cov(Yi~Y) (181)

Weinstein notes that for small perturbations in PMex)

dy.

[P ((elxj) in PM(elx )j] AP (ejx~) (182)

*If the covariance of the BER estimates is small, it is seen

that

a 1 Mcoi)Mev~ melxi PM)Peejxj

4..
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" M (e j xn) /Nte

PM(ejx i PM(ejxj) in PM(elxi) in PM(eixj)

(184)

where n = max(i,j) and Nte is the tail extrapolation sample

size. With the assumption that the {PM(elxm)} have Gaussian

distributions, (184) can be plugged back in to (181) and the

variance of the estimator may be calculated. Although using

(181) promises to be rather difficult, it may be verified

numerically that the i = j = 3 term dominates and thus, the

variance of YK may be written

i2

var(yK) 3  2 N PM(elx 3)
[PM(e x3) in PM(ejx 3 ) te

5(185)
-M(elx 3)ain PM(elx 3)) 2var[P'(e x3)]

from which it is seen that
"i ) 2

2 =a2 (P,(eIK) in PM (e IK) 2a- a var[P'(elx 3  (186)

"' ate 3 \PM(elx 3 ) ln PM(e x3 )) 3

The final variance derivation is for the Modified

Extrapolation technique that has been proposed in this chapter.

Derivation, however, is too strong of a word for what needs

to be done to determine ame. If it is remembered that the

proposal is to use the Modified Monte Carlo method to estimate

the BER for the third extrapolation threshold used in Weinstein's

approach, then the determination becomes the substitution of

(178) for the var[P-(elx 3 )] in (185). The expression for the
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* variance of the proposed estimator is then

2 2 a/2PM(eIK) in PM(eIK) 2 10 ( ex) 1.6
~me a3 \PM(e'x) In PM(elx3) N(Mex

(187)

4.2.2 Performance Comparisons

A Gaussian distribution is assumed from which PM(e) is

drawn for the following comparisons: with P (ejK) chosen

-°-6

to be 1i0e K - 4.78. Since it has already been stated that

10~ samples are at the upper limit of feasibility for pure

V..

Monte Carlo testing, the third threshold, x3, will be

selected to yield a PM(ex3) - 10 4 : x3 - 3.70. Using the

requirement that xi, x 2  and x3 be selected to be evenly

spaced on a logarithmic scale along with what is known from

the equations for the a. 's, the remaining two thresholds are

chosen as x,= 3.02 and x2 - 3.35.

A normalized error of 0.1 has already been specified

so that the sample size requirements may be computed as

*follows from one of the two definitions Of E:

S7

2- 1(188)
NcPM(e)

S2

2 P~e (189)

For the error counting case,

1
*~ N= -Zh ce P (e K)
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Shanmugam and Balaban's method leads to

N 10

° (PM(eIK)

r"

while the tail extrapolation approach yields

ai n PM (e IK)2

"-" Nte = PM(e x3 ) ln PM(elx 3) PM(e x3)"
t.

Finally, the Modified Extrapolation technique requires a

sample size of

N .a32 ( ln PM(eJK) 2 1.6
me T PM(eIx 3 ) ln PMle x3) 10[PM(e x 3)]

w3(".

Table 1 presents the results of these calculations.

5-

6.
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TABLE 1

COMPARISON OF SAMPLE SIZE REQUIREMENTS

P (e K) £Method # Samples

i0- 0.1 Monte Carlo N~ -1

10-6 0.1 Importance Sampling N is= (2.51)10 5

106 0.1 Tail Extrapolation Nt = (9.89)106

10-6 0.1 Modified Extrapolation Nm = (3.94)10 5

10me
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5.0 SUMMARY AND CONCLUSIONS

p In the past four chapters a fairly thorough study of

- the search for an "ideal" performance prediction tool has

been made. This study has attempted to present a comprehensive

view of the need for an efficient, accurate, in short, a

near-ideal predictor for use in the analysis and design of

digital communications systems both in general and in specific

application to satellites. Chapters 1 and 2 laid the foundation

for an understanding of the basic problem that confronts

* satellite communications systems designers and the need for

a performance prediction tool that is accurate, flexible,

easy to use, and computationally efficient (fast). In

Chapter 3 a fairly comprehensive view of the current state

5of affairs is presented along with a review of past work and

its historical development. Finally, in Chapter 4, the best

of the tools that have already been proposed are identified

and a combination of these is proposed and examined.
thatIt was discovered that there are two distinct categories

that the extant performance prediction tools fall into:

the analytical approaches and the simulation-based approaches.

While the former were recognized as fulfilling the speed

requirements, they were shown to be inadequately flexible

and, with the increasing use of TDMA, insufficiently accurate

vis' the effects the nonlinearly operated TWTAs have on the

noise-corrupted uplink signal. On the other hand, the simula-

tion-based approaches were shown to be computationally too

slow or else relatively inaccurate with the two characteristics

in a mutually exclusive trade-off. Overall, however, the

simulation-based tools were found to be superior to the

analytical ones and two were identified as fulfilling the
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greatest number of the requirements presented in the first

two chapters: Weinstein's tail extrapolation method and

Shanmugam and Balaban's modified Monte Carlo approach.

• -In an attempt to create a new and better performance

predictor, it was noticed that the two tools identified as

having the most potential seemed to compliment one another.

Consequently, it was proposed that a new prediction tool,

called the Modified Extrapolation technique, be applied using

what were seen as the best of the characteristics of both

Shanmugam and Balaban's and Weinstein's tools. The proposed

new predictor was described and a variance/sample size

reduction analysis was performed to check the validity of the

proposal. It was discovered that the Modified Extrapolation

.. method, while not as good as Shanmugam and Balaban's approach,

is indeed better than anything else that has previously

existed or been proposed. However, the sample size reduction

is less than 3dB worse than the modified Monte Carlo technique

for the normalized errors selected and examined in the last

chapter. When all of the assumptions that have been made

during the formulation and analysis of the two methods are

taken into account, it is reasonable to state that the difference

in required sample sizes is insignificant. Due to the increase

in complexity presented by the new technique over its close

competitor, one must conclude that the modified Monte Carlo

. -technique of Shanmugam and Balaban is superior for the

normalized error and error probability of the typical satellite

°' communications system. Remember, however, that the sample

size reduction factors of both Weinstein's method and

"O Shanmugam and Balaban's approach increase as the BER decreases.

It can be seen, therefore, that the Modified Extrapolation will,
for some BER < 10-6, be superior to the importance sampling

technique.
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